Invited research article

Vein-type graphite deposits in Sri Lanka: The ultimate fate of granulite fluids

Jacques L.R. Toureta,b, Jan Marten Huizengab,c, K.V. Wilbert Kehelpannalad, Francesca Piccolia

a Institut de Minéralogie, Physique des Matériaux, Cosmochimie, Sorbonne Universités, 4 Place Jussieu, F-75005 Paris, France
b Economic Geology Research Institute (EGRU), College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
c Department of Geology, University of Johannesburg, Auckland Park, 2006 Johannesburg, South Africa
d Department of Geology, Faculty of Science, University of Botswana, Private Bag UB00704, Gaborone, Botswana

A R T I C L E I N F O

Keywords:
Sri Lanka
Hydrothermal vein graphite
Granulite
CO$_2$ fluid
High salinity brine
Lower crust

A B S T R A C T

Hydrothermal graphite vein deposits hosted in granulite facies metamorphic rocks in Sri Lanka are unique because of their large size and high crystallinity. In this paper, we present a review of the structural-meta-
morphic setting of the graphite veins and of the graphite stable carbon isotope data, and we present fluid inclusion data from quartz in the graphite veins and in the host rocks from several graphite deposits in Sri Lanka. The studied host rocks show decompression rims of plagioclase and orthopyroxene after garnet. The quartz in these decompression rim textures comprise, in order of abundance, high-salinity brine, H$_2$O-CO$_2$, and low-
salinity aqueous fluid inclusions. The brine fluid is responsible for metasomatic features observed in garnet decompression rims, including feldspar leaching and re-precipitation. Quartz cogenetic with vein graphite comprises, in order of abundance, low-salinity aqueous, CO$_2$, high-salinity brine, and H$_2$O-CO$_2$ fluid inclusions. Published graphite carbon isotope data indicates a dominant mantle source, mixed with small amounts of carbon-bearing fluids of supracrustal origin. We propose that large quantities of mantle-derived CO$_2$ fluid are temporarily stored in the lower crust during the final stage of Gondwana supercontinent amalgamation. The CO$_2$ is subsequently released from the lower crustal rocks during decompression associated with fast uplift. The graphite veins in Sri Lanka were formed during this uplift stage and represent as such paleofluid channels. In this respect, they are comparable to the quartz-carbonates mega-shear zones found in other granulite terranes. Depending on the redox conditions, mantle CO$_2$ and brines may either result in the formation of graphite or quartz-carbonate veins.

1. Introduction

Since the 19th century, Sri Lanka has been one of the major graphite producers in the world, especially for high quality, highly crystalline graphite, containing ca. 95–98 wt% of pure carbon. Other graphite deposits occur in the USA and other parts of former Gondwana, e.g. Madagascar (Kehelpannala, 1993; Luque et al., 2014) and southern India (Soman et al., 1986; Radhika and Santosh, 1996; Sanyal et al., 2009; Luque et al., 2014). The graphite deposits in Sri Lanka, however, are the largest of their kind, occurring in a wide north-south extending belt in the western part of the Precambrian high-grade metamorphic terrains of the island (Dissanayake, 1981; Kehelpannala, 1995, 1999a). Graphite mining in Sri Lanka had its peak during the first half of the 20th century, with over 2500 graphite pits and mines active before World War II (Wijayananda, 1985). Competition with mass production of flake graphite, notably from countries like China and Mexico, resulted in a decrease in mining activities, despite a growing global interest for high-crystallinity graphite. At present, Sri Lanka is the only producer of the high-quality lump and chippy dust graphite varieties, coming from a limited number of underground mines (in particular the Kahatagaha and Bogala mines, see Fig. 1). Graphite-quartz and host rock samples collected from four of those mines were selected for the present study (Fig. 1). The main aims of this study are to (1) present a detailed review of the structural-meta-morphic setting and carbon stable isotope geochemistry of Sri Lankan vein graphite, (2) present, for the first time, fluid inclusion data, and (3) discuss the formation of graphite veins and its relationship with the tectono-meta-morphic history of the host rocks.

2. Precambrian geology of Sri Lanka

2.1. Lithotectonic units of Sri Lanka

The position of Sri Lanka within East Gondwana, linking India, Madagascar, Africa and east Antarctica, makes this region of prime importance for understanding the mode of formation of the Late
Neoproterozoic Gondwana supercontinent (Yoshida et al., 1992, Yoshida and Santosh, 1994; Santosh et al., 2014; Kehelpannala, 2017a). The various configurations of east Gondwana, positioning Sri Lanka in the central part, have recently been reviewed by Kehelpannala (2017a, 2017b). Except for a thin Cenozoic sedimentary cover along the northwestern coastal belt of Sri Lanka (Fig. 1), the whole island comprises Precambrian high-grade metamorphic rocks metamorphosed to upper amphibolite, granulite, and ultrahigh temperature (UHT) granulite facies.

Based on Nd model ages (Milisenda et al., 1988) and U-Pb zircon ages, the Neoproterozoic to Palaeoproterozoic basement of Sri Lanka is subdivided into three lithotectonic units or complexes (Fig. 1, Kehelpannala, 1997), namely the Wanni Complex (WC), the Highland Complex (HC) and the Vijayan Complex (VC). The characteristics of these three complexes are summarized in Table 1. The contacts between the three complexes are generally assumed to be tectonic (Kröner et al., 2013, and references therein). The boundary between the centrally located HC and the VC is a major crustal-scale ductile shear zone representing a suture zone (Kröner et al., 2013, and references therein). The nature and the exact location of the contact between the WC and the HC in the southwest, on the other hand, is uncertain (Kröner et al., 2013).

Kröner et al. (1991) and Cooray (1994) identified the Kadugannawa Complex (Fig. 1) as an addition to the others based on the apparently unique (migmatized) mafic lithologies comprising hornblende and hornblende-biotite gneisses and the presence of doubly plunging synforms. This subdivision has been accepted by numerous researchers including Kröner et al. (2003), Santosh et al. (2014), He et al. (2015, 2016), and Dharmapriya et al. (2017). However, the similarities in Nd model and U-Pb zircon ages, geochemistry (Milisenda et al., 1988, 1994; Kröner et al., 1991, 2003; Willbold et al., 2004; Kehelpannala, 2004), lithologies, and structural geology suggests that the KC is part of the WC (Kehelpannala, 1997). This interpretation has been adopted by Osanai et al. (2006), Kröner et al. (2013), Hiroi et al. (2014), and also in this study.

The vein graphite occurrences of Sri Lanka are located in the
western part of the country (Kehelpannala, 1995, 2017b) in both the WC and HC (Fig. 1). It is noteworthy that graphite formation post-dates the granulite facies metamorphism of both the WC and the HC (Kehelpannala, 1993, 1995, 1999a). Most graphite deposits are within distance of ca. 15–30 km of the WC-HC boundary and approximately aligned parallel to this boundary (Fig. 1). It is also interesting to note that some vein graphite deposits in the Kurunegala area in the WC are located near the “incipient charnockite” occurrences (Fig. 1) (Hansen et al., 1987; Kehelpannala, 1999b; Perchuk et al., 2000).

2.2. High-grade metamorphism in Sri Lanka

2.2.1. Age of metamorphism

The age constraints of the metamorphic events of the different complexes have been the subject of many studies. The main granulite-facies metamorphic event in the HC, based on Rb-Sr whole-rock isochron ages was initially considered to be Late Mesoproterozoic (1100 Ma, Cordani and Cooray, 1989) or Palaeoproterozoic (1930 Ma, De Maesschalck et al., 1990). Single zircon dating (summarized in Santosh et al., 2014 and in Dharmapriya et al., 2016) documents Archaean to Palaeoproterozoic ages (3.2–2.4 Ga) for detrital zircons from the WC metasediments (Kröner et al., 1987). Studies by Santosh et al. (2014) and He et al. (2015) indicate repeated thermal events during most of the Neoproterozoic (between 1000 and 600 Ma). Available zircon U-Pb ages suggest that all magmatic rocks and metasediments in both the WC and HC have been metamorphosed under amphibolite to granulite facies conditions at ca. 620–535 Ma (Kröner et al., 1994; Kröner and Jaeckel, 1994; Kröner and Williams, 1993; Santosh et al., 2014; Dharmapriya et al., 2016; Osanai et al., 2016a). Zircon metamorphic ages derived from various lithologies in both the WC and HC record at least two thermal events at ca. 620–580 Ma and 560–535 Ma (Santosh et al., 2014; Dharmapriya et al., 2016; Osanai et al., 2016a).

The age of the UHT metamorphic event has been a matter of debate. SAjeev et al. (2003) obtained a Sm-Nd whole-rock isochron age of 1478 ± 58 Ma, inferring that UHT granulites could be relics of a pre-African metamorphism. However, a U-Pb zircon metamorphic age of ca. 580 Ma from relatively high-pressure mafic UHT granulites (SAjeev et al., 2007) as well as zircon and monazite ages of ca. 570 Ma from sapphire granulites (SAjeev et al., 2010) have led these authors to revise their earlier views and to consider, like most authors working in the region, that UHT metamorphism is Pan-African (Eocambrian) in age and coeval with the amalgamation of the Gondwana supercontinent.

2.2.2. Metamorphic P-T conditions and UHT metamorphism

The VC records upper amphibolite- to granulite-facies metamorphism with estimated peak P-T conditions of ca. 8 kbar and 800–850 °C, respectively (Kleinschrodt, 1994; Kröner et al., 2013). Peak P-T conditions in the WC are slightly lower: 5–7 kbar and 700–830 °C (Schenk et al., 1991; RAase and Schenk, 1994), respectively. The HC shows an increase in metamorphic P-T conditions from 4.5–6 kbar and 700–750 °C in the southwest to 8–9 kbar and 800–900 °C in the southeast (Dharmapriya et al., 2014; Dharmapriya et al., 2017, and references therein). Both the WC and HC are characterized by clockwise P-T paths (RAase and Schenk, 1994; Dharmapriya et al., 2017, and references therein).

A significant feature of the HC is the occurrence of UHT granulites (Sajeev and Osanai, 2004; Osanai et al., 2006) in the central part (Fig. 1) along the folded suture zone between the WC and the HC (Dharmapriya, 2017). The UHT granulites comprise typical UHT mineral assemblages (particularly in Mg-rich lithologies), including sapphire-kyanite, orthopyroxene-sillimanite-quartz, and osmutilite-spinel-quartz (e.g., Sajeev and Osanai, 2004; Dharmapriya et al., 2015; Osanai et al., 2016a). Peak P-T conditions were estimated to be 9–12.5 kbar and 900–1150 °C, respectively (Sajeev and Osanai, 2004; Sajeev et al., 2007; Osanai et al., 2006, 2016a). Like for the WC and the non-UHT granulites in the HC, a clockwise P-T path characterizes UHT granulites in the HC (Dharmapriya et al., 2015). Rocks with suitable composition in both the WC and HC show evidence for decompression as exemplified by the breakdown of garnet according to the following reactions (e.g. Schenk et al., 1991; Kehelpannala, 1999a):

\[
\text{garnet + quartz } \rightarrow \text{orthopyroxene + plagioclase + Fe – Ti oxides}
\]
garnet + clinopyroxene → orthopyroxene + plagioclase + Fe–Ti oxides

These reactions result in symplectic orthopyroxene and plagioclase forming a typical decompression rim texture around garnet. Decompression (6.5 to 5 kbar) took place after the main folding event in Sri Lanka at ca. 700–650 °C, i.e. ca. 50–100 °C below the peak metamorphic temperature (Schenk et al., 1991; Dharmapriya et al., 2014). Noteworthy is the presence of spherulitic and dendritic felsite inclusions in garnet in both HC and WC granulites, most of them situated near the HC-WC boundary (Hiroi et al., 2014). Their presence indicates fast uplift in a continent collision environment (Hiroi et al., 2014). The VC shows a distinct different retrograde evolution compared to the WC and HC, characterized by retrogression associated with pervasive, fluid-induced potassium alteration, which also resulted in the formation of widespread migmatites in the complex (Kröner et al., 2013).

2.2.3. Fluids present during high-grade metamorphism

A major (but rarely mentioned) feature of UHT granulites is the occurrence, in most rock-forming minerals, of a great number of primary high to ultrahigh density CO2 fluid inclusions, (up to ca. 1.16 g/cm³) (e.g., Santosh et al., 2004; Santosh and Omori, 2008a; Touret et al., 2016). CO2 fluid inclusions in sapphire-bearing UHT granulites (Kriegsman and Schumacher, 1999) in Sri Lanka have been reported by Bolder-Schrijver et al. (2000) and Santosh and Omori (2008a). For example, the sapphire-bearing granulites of Hakurutale (Fig. 1) located along the folded WC–HC boundary (Fig. 1) demonstrate the presence of significant amounts of CO2 trapped in fluid inclusions (Bolder-Schrijver et al., 2000) (Fig. 2). Rock-forming minerals such as garnet and pyroxene may contain up to a few weight percent CO2 trapped in fluid inclusions (e.g., Touret and Hansteen, 1988). The CO2 fluid is associated with magnesite that occurs as a daughter phase in the fluid inclusions indicating that MgCO3 was a component in the CO2 fluid (see discussion in Bolder-Schrijver et al., 2000). The association of CO2 with UHT granulites suggests that mantle CO2 was transported by magma during peak metamorphism (Touret and Huizenga, 2011) allowing the lower crust to reach near-magmatic temperatures (> 1000 °C) (Kelsey and Hand, 2015). As has been shown for other granulite occurrences, a high-salinity brine fluid is commonly present as well (e.g., Touret and Huizenga, 2011) which is, because of its high salinity (at least 40–50 wt % NaCl equivalent), immiscible with CO2 even under UHT granulite facies metamorphic conditions. In contrast to CO2-bearing fluid inclusions, brine fluid inclusions are generally not preserved during retrograde metamorphism. The greater mobility of brine fluids along mineral intergrain boundaries (e.g., Gibert et al., 1998) makes these fluids less susceptible for trapping and preservation in inclusions as has been discussed in detail by Touret (2001) and Touret and Huizenga (2011). Even if brine fluids do get trapped, the steep isochors of brine fluid inclusions most likely result in their (partial) destruction during the isobaric cooling stage of UHT metamorphic rocks (Touret, 2001; Touret and Huizenga, 2011), which in many cases precedes uplift and decompression. The existence of brine fluids is clearly evidenced by typical metasomatism-related microstructures (feldspar microveins, myrmekites) along intergrain boundaries in charnockites and granulites (Harlov et al., 1998; Perchuk et al., 2000; Touret and Huizenga, 2011, 2012; Safonov and Aranovich, 2014). However, the modification or absence of brine fluid inclusions makes it impossible to determine the exact composition of brine fluids.

As mentioned earlier, a typical feature of the WC is the presence of incipient charnockites (e.g., Hansen et al., 1987). They are the result of local transformation of amphibolite-facies gneisses into a homogeneous charnockite. The classical Kurunegala occurrence (Fig. 1) has been studied in detail by Hansen et al. (1987) and Perchuk et al. (2000). Elongated patches of dark greenish charnockites formed along a system of small-scale ductile shear zones and rarely along foliation planes in grey-white quartzfeldspathic gneisses (e.g., Keihelpannala, 1999b). They vary in length between 10 cm up to a few meters and have a thickness of 10–20 cm. The charnockite patches show a decrease in biotite and hornblende and an increase in orthopyroxene content, while the grain size of K-feldspar increases. Evidence for alkali metasomatism, especially feldspar microveins along quartz-feldspar intergrain boundaries or myrmekites, is widespread. Remnants of brine inclusions have been found in and near these microveins, together with rare CO2 inclusions (Perchuk et al., 2000; Touret and Huizenga, 2012). Charnockitization occurs in presence of fluid with a H2O activity of 0.6 (Perchuk et al., 2000) at P-T conditions of 650–750 °C and 5–6 kbar, respectively. An H2O activity of 0.6 relates to high-salinity brine fluid (ca. 50 wt% NaCl equivalent, Aranovich and Newton, 1996) or a H2O-CO2 fluid (ca. 50 mol% CO2, Aranovich and Newton, 1999).

2.3. Tectono-metamorphic evolution of Sri Lanka

Keihelpannala (2004) and Santosh et al. (2014) have presented models explaining the tectono-metamorphic evolution of Sri Lanka. Keihelpannala (2004) (Fig. 3a) proposed that the WC, HC, and VC were three distinctly different crustal domains that amalgamated during the Late Neoproterozoic Gondwana assembly by two separate collision events following two separate subductions. According to this model, the WC seems to have formed as part of root zone of an Andean-type magmatic arc whereas the VC may have originated as part of an island arc (Keihelpannala, 2004). The subduction of the HC microcontinent under the WC magmatic arc led to the first collision between the WC and the HC. The subsequent subduction of the oceanic plate carrying the VC island arc under the united WC-HC block brought these three units into contact during the second collision (Keihelpannala, 2004). In this model, granulite facies metamorphism in both the WC and HC are related to the first collision and the high-grade metamorphism reported in the VC is related to the second collisional event.

Santosh et al. (2014) speculated, in order to link the HC to the metasedimentary terrains in southern India, that the Late Neoproterozoic-Cambrian HC formed as part of an accretionary complex developed during a Neoproterozoic double-sided subduction involving the
WC and VC (Fig. 3b). In this model, HC sediments are considered to have deposited as an accretionary complex on a Neoproterozoic ocean between the WC and the VC, and the final collision between these two units during Late Neoproterozoic-Cambrian led to the closure of the ocean creating the HC as a suture zone.

The two-collision model (Kehelpannala, 2004) appears to be the best fit with the available data, including the Late Neoproterozoic-Cambrian metamorphic ages, the large volume of Paleoproterozoic metagranitoids in the HC, the HC klippen occurring in the south-eastern part of the VC (Fig. 1), and the clockwise P-T paths of the HC and WC (Raase and Schenk, 1994; Dharmapriya et al., 2017, and references therein). Most of these features are difficult to explain in the double subduction model proposed by Santosh et al. (2014).

3. Nature of graphite veins

Almost all graphite-bearing veins are oriented in an east-west direction and steeply dipping to the south. The thickness of most graphite veins varies from a few mm to a few dm, the thickest being < 1 m. Their horizontal length ranges from a few meters to tens of meters, the longest being over 75 m (Kehelpannala, 1999a). The graphite veins occur in swarms forming extensional en-echelon arrays. The “upward forking” of the graphite veins indicates that they are branching off from a common source area at an unknown depth (Kehelpannala, 1999a).

The graphite veins crosscut gneissic foliations of inhomogeneous granulite-facies rocks of both sedimentary and igneous origin. Most of the host rocks are free of disseminated graphite. The graphite veins also crosscut the axial planes of large-scale synforms and antiforms (Kehelpannala, 1999a) postdating the major folding event, which occurred after peak metamorphism but still at granulite-facies metamorphic conditions (Kehelpannala, 1999a).

In outcrop, the graphite vein boundaries generally appear knife sharp. However, at close inspection it can be observed that the vein forms a series of regularly spaced bulges convex towards the host rock (Fig. 4a, b), which is clearly visible in thin section (Fig. 4c, d). The occurrence of a few garnet remnants in the graphite vein in sample 1KG1 (top of Fig. 4d) indicates that the graphite split the wall rock. The graphite veins comprise a wide variety of gangue minerals including quartz, Na-K-feldspar, clinopyroxene, biotite, muscovite, apatite, pyrite, pyrrhotite, chalcopyrite, sphalerite, marcasite, calcite, siderite, dolomite, iron ores and traces of Mn carbonate (Kehelpannala, 1995, 1999a). Graphite crystals are up to a few cm in size and show fibrous, coarse-flaky, and rosettes crystal shapes. Typically, graphite occurs as fibrous aggregates at the vein edge, becoming elongated crystals intergrown with quartz approximately perpendicular to the vein wall. Massive graphite characterizes the centre of the vein (Kehelpannala, 1995; Katz, 1987). Detailed textural descriptions of the vein graphite by Katz (1987) provide evidence for repetitive events of fracturing and sealing (crack-seal events).

The metamorphic minerals of the host rocks include quartz,
plagioclase, K-Na-feldspar, garnet, orthopyroxene, clinopyroxene, hornblende, biotite, calcite and dolomite. Sillimanite occurs in rare pelitic host rock, especially at the Bogala mines. Close to the graphite hornblende, biotite, calcite and dolomite. Sillimanite occurs in rare plagioclase, K-Na-feldspar, garnet, orthopyroxene, clinopyroxene, plagioclase, orthoclase, myrmekite, Cl-rich dark brown biotite, Cl-rich hornblende, toplusion minerals include antiperthite, chlorite, sphene, Cl-F-apatite, Cl-scapolite and unidentified Ti-bearing mineral phases (Kehelpannala, 1995). The exsolution of plagioclase, forming antiperthite in the wall rock alteration zones is unique to the Sri Lankan vein graphite and is found in all altered rocks (including altered basic rocks) (Kehelpannala, 1999a). The alteration of a thin calcisilicate rock layer from the Bogala mine excludes the involvement of carbonate carbon in the origin of vein graphite (Kehelpannala, 1999a).

The occurrence of graphite deposits within granulite facies rocks in Sri Lanka has led Katz (1987) to propose that graphite precipitated from a CO₂ fluid at granulite facies metamorphic conditions. However, as discussed earlier, the graphite veins post-date peak metamorphism excluding this as a possibility (Kehelpannala, 1995, 1999a; Kehelpannala and Francis, 2001).

3.1. Carbon source for graphite: Stable isotopes

The origin of graphite in granulites is a long-standing problem (Luque et al., 2014). Graphite occurs frequently as an accessory or even rock-forming mineral in high-grade metamorphic rocks (e.g., Luque et al., 2014). It typically occurs as disseminated flakes in metapelites or in association with carbonate minerals in marbles (Landis, 1971; Nokleberg, 1973). In the first case, carbon is derived from organic matter in the sediment protoliths (Landis, 1971) and redistributed by hydrothermal fluids during metamorphism (Rumble III et al., 1986, Rumble, 2014). Graphite in marbles is also of supracrustal origin and derived from the reduction of carbonates or carbonaceous matter (Weis et al., 1981). In this case, carbon is immobile suggesting a fluid-absent environment, which is indicated by the persistence of carbonate metasedimentary rocks at granulite facies P-T conditions. The graphite flakes in metapelites show a relatively light carbon isotope signature, indicative of biogenic origin despite the complexities of fluid-mineral interaction with relatively low δ¹³C_PDB values of ca. −25‰ (Luque et al., 2012, 2014). The δ¹³C_PDB values from graphite in marbles are heavier and close to ca. 0‰ (Luque et al., 2012, 2014).

The isotope composition of vein graphite in Sri Lanka has been the subject of numerous studies (Dobner et al., 1978; Weis et al., 1981; Binu-Lal et al., 2003; Touzain et al., 2010; Luque et al., 2012, 2014). Reported δ¹³C_PDB values of graphite range from −6 to −10‰, with slight variations across the vein. Graphite in contact with the host rocks shows a δ¹³C_PDB value of −9.4‰ whereas graphite in the centre shows a δ¹³C_PDB value of −10.3‰ (Hoernes et al., 1994; Touzain et al., 2010; Luque et al., 2012, 2014). The progressive change of a relatively light core (−13‰) to a heavier rim (−8.5‰) has also been observed by Santosh and Wada (1993) within a single graphite crystal in a khondalite from southern India. Vein graphite δ¹³C_PDB values are significantly higher than those for disseminated graphite in the khondalite host rocks (δ¹³C_PDB values between −12 and −18‰). Variable δ¹³C_PDB Values of −8.1‰, −15.9‰ and −16.3‰ are obtained from disseminated graphite from three different metapelite samples from the southwestern part of the HC near vein graphite deposits (Fig. 1). The isotopic variation can be interpreted as a result of biogenic graphite in the khondalite proto-sediment that is overgrown by graphite derived from a heavier mantle CO₂ fluid (Luque et al., 2014).

Carbon isotopes from different generations of graphite in rocks from the Digana shear zone provides valuable additional information (Binu-Lal et al., 2003). Shear zones are widespread in and around most granulite terranes and range from small-scale ultramylonites and
These values indicate mantle-derived CO2 as a possible source of CO2 trapped in fluid inclusions (e.g. Hoefs and Buick, 1987; Jackson et al., 1988; Dunai and Touret, 1993). We can, therefore, conclude that Sri Lankan vein graphite was either related to a release of mantle CO2 that was temporarily stored in lower crustal granulites. The crustal carbon can be derived either from the breakdown of carbonate carbon (Kehelpannala, 1999a) or alternatively by the reaction of carbonate with graphite veins (Binu-Lal et al., 2003). These values indicate mantle-derived CO2 as a possible source.

A compilation of > 100 graphite δ13C values from Digana and other areas of Sri Lanka, including the HC, the WC, and the Bogala and Kahatagaha graphite mines (Fig. 5, modified after Binu-Lal et al., 2003) shows a clear maximum at a δ13C value of ca. -8‰. This maximum is flanked by two domains with fewer measurements towards very light δ13C values (ca. -18‰) indicating biogenic carbon and heavy δ13C values (ca. 0‰) probably from carbonate carbon.

In conclusion, the carbon stable isotope studies show that the carbon of Sri Lankan graphite is derived from the mantle with a minor contribution from crustal carbon. Numerous studies have shown that CO2 trapped in fluid inclusions are either derived from mantle CO2 (Kehelpannala, 1999a) or alternatively related to a release of mantle CO2 that was temporarily stored in lower crustal granulites. The crustal carbon can be derived either from the oxidation of organic matter or from the reduction of carbonate sedimentary rocks.

4. Fluid inclusions in host rocks and in quartz associated with vein graphite

Considering the numerous papers devoted to regional geology, geochemistry, and metamorphic petrology of the Precambrian rocks in Sri Lanka, the lack of any fluid inclusion data is remarkable, bearing in mind the obvious hydrothermal character of the graphite veins (Katz, 1987; Kehelpannala, 1999a). The paper by Luque et al. (2014) is, to our knowledge, the only one that describes fluid inclusions in quartz associated with vein graphite (Bogala mine), i.e. trailbound H2O-CO2 fluid inclusions associated with graphite-bearing cavities.

For the purpose of this study, samples from host rocks and from quartz in graphite veins from four large graphite mines (of which three are still active) in Sri Lanka were studied (Fig. 1, Table 2). These include the Paragoda and Kahatagaha mines north-northwest from Kandy (Fig. 1), and the Bogala and Rangala mines southwest of Kandy (Fig. 1). The graphite veins in these mines are either massive or contain, in addition to quartz, a number of gangue minerals including pyrite, chalcopyrite, carbonates and apatite as mentioned previously in Section 3.

Doubly polished samples (ca. 150 μm thick) were used for microthermometry using a Linkam heating-freezing stage. Pure CO2 and H2O inclusions in quartz were used for calibration at the triple points of CO2 (−56.6 °C) and H2O (0.0 °C). Critical homogenization temperatures of synthetic H2O inclusions in quartz were used for calibration at 374 °C. Final CO2 melting temperatures (Tm) and CO2 homogenization temperatures (Th) have an accuracy of ± 0.2 °C, homogenization measurements of aqueous inclusions have an accuracy of ± 5 °C.

Phase transitions were measured during heating and include final melting of CO2 and ice, clathrate dissociation, and homogenization into the liquid phase of CO2 and aqueous fluid inclusions. The program BULK (Bakker, 2003) was used to calculate the CO2 molar volume from the homogenization temperature. Isochores for CO2 were calculated using the equation of state from Zhang and Duan (2009). Salinity, density and isochores for H2O-NaCl fluid inclusions were calculated using Hokie_Flincs_H2O-NaCl (Steele-MacInnis et al., 2012). Raman analyses were conducted with a WITec Alpha Access 300 at the Advanced Analytical Centre at James Cook University. The Raman is equipped with a green laser with an excitation wavelength of 532 nm.

4.1. Host rock descriptions

The host rocks of the Bogala and Rangala graphite deposits are garnet-biotite quartzofeldspathic gneiss, metadiorite and minor garnet-sillimanite-graphite gneiss (khondalite), and calcisilicate gneiss (Kehelpannala, 2017b). The host rocks of graphite veins in the Kahatagaha mine are orthopyroxene-bearing garnetiferous quartzofeldspathic gneiss and minor metachert. The main rock types at the Paragoda deposit include quartzofeldspathic gneiss and metagranite. Some of the garnet-sillimanite gneisses (e.g., sample 2BGM2, Bogala) mapped outside the mines contains a large abundance of prismatic sillimanite, which, together with the equally abundant garnet, gives the rock a pronounced restitic character. The texture is that of a typical granulite, with a strong stretching lineation defined by elongated and flattened quartz crystals, referred to as “plattenquartz” (Fig. 6a).

From each mine, gangue mineral quartz with intergrown graphite and granulite host rocks were sampled at the levels of operation during the year 2013 (at the adit level of the Rangana mine, at the 124 m level of Bogala and at 340 m and 270 m levels of Kahatagaha). In addition, samples of gangue quartz with graphite from the dumping sites of the Paragoda and Bogala mines were collected. Table 2 shows the details of the samples used in this study.

The khondalites in the different mines are similar, with some minor differences. For example, there is more garnet and evidence of partial melting in khondalite host rock at Bogala, whereas there is more biotite and less garnet in host rock khondalite from Kahatagaha. Some samples (e.g., sample 2KG1 from Kahatagaha) show a clear migmatite texture of mm-thick fine-grained garnet-rich layers, separated from each other by coarse-grained leucocratic quartz-K-feldspar-plagioclase layers. We will concentrate in this study on samples from the Bogala and Kahatagaha mines.

Bogala sample 2BGM2 (Fig. 6) is a typical garnet-sillimanite-bearing khondalite, containing a large amount of sillimanite aligned in a plattenquartz-defined foliation plane (Fig. 6a). Garnet in this sample shows a core comprising small dark solid inclusions, together with large clear, rounded quartz inclusions. The small dark inclusions are made of an aggregate of minute mineral grains, less than a few micron in size, in which quartz and feldspar can be identified (Fig. 6b). They can be interpreted as recrystallized melt inclusions in granulites, also referred to as “nanogranoites” as described by Cesare et al. (2009) in migmatic and granulites from Kerala.
Table 2
Information of samples used in this study. Mineral abbreviations after Whitney and Evans (2010).

<table>
<thead>
<tr>
<th>Sample number</th>
<th>Mine</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1BGM1</td>
<td>Bogala</td>
<td>Contact between Gr vein and Grt-Bt bearing quartzofeldspathic gneiss host rock</td>
</tr>
<tr>
<td>2BGM2</td>
<td>Bogala</td>
<td>Host rock (sampled at 124 m level) sampled ca. 20 cm above the Gr vein.</td>
</tr>
<tr>
<td>3BGM1</td>
<td>Bogala</td>
<td>Large Gr crystals comprising Gr from a Gr vein collected from the dump site</td>
</tr>
<tr>
<td>3BGM2</td>
<td>Bogala</td>
<td>Large Gr crystals comprising Gr from a Gr vein collected from the dump site</td>
</tr>
<tr>
<td>3BGM3</td>
<td>Bogala</td>
<td>Gr-Bt gneiss comprising a part of the Gr vein collected from the dump site</td>
</tr>
<tr>
<td>1KGM1</td>
<td>Kahatagaha</td>
<td>Host rock (sampled at 340 m level). Grt-Qz-Fsp gneiss trapped in Gr vein</td>
</tr>
<tr>
<td>1KGM2</td>
<td>Kahatagaha</td>
<td>Qz from Gr vein and Grt-Qz-Fsp-bearing host rock sampled at 270 m level</td>
</tr>
<tr>
<td>2KGM1</td>
<td>Kahatagaha</td>
<td>Coarse-grained Qz-Mc-Gr from Gr vein sampled at 270 m level</td>
</tr>
<tr>
<td>2KGM2</td>
<td>Kahatagaha</td>
<td>Grt-Bt quartzofeldspathic gneiss host rock ca. 20 cm away from Gr vein sampled at 270 m level</td>
</tr>
<tr>
<td>3KGM1</td>
<td>Kahatagaha</td>
<td>Large Qz crystal in Gr vein collected from the dump site</td>
</tr>
<tr>
<td>1PGM1</td>
<td>Paragoda</td>
<td>Qz from Gr vein</td>
</tr>
<tr>
<td>1RGM1</td>
<td>Rangala</td>
<td>Qz from small Gr vein, with interstratified idiomorphic Bt and Gr</td>
</tr>
<tr>
<td>1RGM2</td>
<td>Rangala</td>
<td>Fine-grained granulite host rock sampled ca. 20 cm above Gr vein</td>
</tr>
<tr>
<td>2RGM1</td>
<td>Rangala</td>
<td>Qz from Gr vein</td>
</tr>
<tr>
<td>2RGM2</td>
<td>Rangala</td>
<td>Fine-grained granulite host rock comprising pegmatoid segregations. Gr occurs on coarse Fsp cleavage planes. Sample taken ca. 40 cm above Gr vein</td>
</tr>
</tbody>
</table>

Fig. 6. Sillimanite-bearing kyanite in sample 2BGM2 from Bogala. (a) Typical texture (crossed polarized light) showing prismatic sillimanite appearing as crystals with second-order blue interference colours parallel to foliation and elongated flattened quartz (plattenquartz) with first order grey-white interference colours. (b) Recrystallized melt inclusions in garnet core. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Samples 1BGM1 (Bogala, Fig. 4a, c) and 1KGM1 (Kahatagaha, Fig. 4d) were collected at the contact of two different graphite veins. Both samples are garnet-bearing metapelite and associated with the khondalite, except that sillimanite is notably absent. Partial melting is indicated by the relatively large amount of garnet, but no melt inclusions were identified in these rocks.

The most prominent textural feature in all khondalites and garnetiferous quartzofeldspathic gneiss is the occurrence of decomposition reaction rims around garnet, comparable to those found elsewhere in Central Sri Lanka as described by Schenk et al. (1991). In the present case, the decomposition texture is characterized by an almost continuous rim of plagioclase (altered to orthoclase), together with other minerals including orthopyroxene and Fe-Ti oxides. Their extent is quite variable, from a thin rim around corroded garnet (1 in Fig. 7a) to a broad zone in which only a few garnet crystals are left (Fig. 7b). In samples near the graphite veins (sample 3BGM3), garnet has almost been completely consumed (Fig. 7b) and often plagioclase in the decomposition rim is replaced by fine-grained sericite. In the larger decomposition rims, altered plagioclase (1 in Fig. 7b) is accompanied by regularly spaced, green-brown pleochroic biotite (2 in Fig. 7b). The decomposition rims are surrounded by large, undeformed quartz crystals (2 in Fig. 7a), which appear similar to the quartz segregations found in some graphite veins (e.g., samples 3BGM1 and 3BGM2). Sample 1KGM1 shows a rim of intergrown plagioclase-K-feldspar, in roughly equal volume proportions (i.e., mesoperthite) around garnet. Antiperthite may also occur in some alteration zone associated with graphite veins as described by Kehelpannala (1999a).

There is ample evidence that these mineralogical changes occurred in the presence of fluids. This information is obtained not only from fluid inclusions, as will be discussed later, but also from the presence of intergranular orthoclase microvine. Feldspar microvine are common in granulites and document the migration of brine fluids along intergrain boundaries (e.g., Harlov et al., 1998). Here, feldspar microvine are common around antiperthite crystals in the decomposition textures in sample 1KGM1 (Fig. 8a) and resemble those found in incipient charnockites at Kurunegala (Perchuk et al., 2000) (Fig. 8b).

Alkali metasomatism described from the alteration zones around graphite veins (Kehelpannala, 1995) (Fig. 9a) is exemplified by the alteration of plagioclase to, initially antiperthite, and then sericite (sample 3BGM3). Another example involves leaching out of plagioclase (Fig. 9b, sample 1KGM1). Here, the breakdown of garnet (Reaction (1)) results in a decomposition texture around garnet (1 in Fig. 9b) that comprises regularly-spaced, subidiomorphic plagioclase crystals separated by orthopyroxene needles growing perpendicular to the garnet grain boundary. The leaching of plagioclase caused orthopyroxene needles being pulled together forming an intricate texture. Dissolved material subsequently precipitates in the outer part of the aureole (3 in
Fluid inclusions in host rocks

Fluid inclusions in host rocks near the graphite veins add supporting evidence on the nature of fluids involved in graphite vein formation and the associated metasomatic processes. In Bogala (sample 1BGM1), quartz rims within the decompression texture unfortunately comprise only a few fluid inclusions. Fluid inclusions are more abundant in undeformed quartz crystals outside the decompression rim. Overall, four fluid inclusion types were identified in host rocks samples from Bogala and Kahatagaha (Fig. 10).

The first fluid inclusion type represents a low-salinity aqueous fluid (Fig. 10a). The fluid inclusions (5–10 μm) appear as negative crystal shaped liquid-vapour fluid inclusions, either isolated or aligned along intragranular trails (trail terminology after Van den Kerkhof and Hein, 2001, and references therein). They contain a tiny vapour bubble freely moving in a liquid. Initial melting at ca. −20 °C and final melting of ice between −1 and 0 °C indicates a low salinity (< 2 wt% NaCl). Liquid homogenization occurs between 150 and 200 °C. In some cases, a tiny black solid phase is attached to the vapour bubble, which is most probably graphite.

The second fluid inclusion type is characterized by clusters of relatively large (ca. 20–30 μm) regular and irregular shaped H₂O-CO₂ fluid inclusions (Fig. 10b). Melting of CO₂ occurs at −56.6 °C, CO₂ liquid homogenization occurs at ca. +30 °C (i.e., density of the CO₂ phase is 0.59 g/cm³). The variable water volume fraction from almost zero up to 50 vol% indicates post-trapping modification. Consequently, it is difficult to estimate the fluid composition, the best proxy would be to use the H₂O-CO₂ fluid inclusions with a maximum H₂O content (50 vol% H₂O) corresponds to CO₂ concentration of ca. 20 mol%.

The third fluid inclusion type represents a high-salinity brine fluid. The fluid inclusions occur as decrepitated isolated, intragrain, and transgranular trail-bound fluid inclusions. Small vapour bubbles are present in some satellite fluid inclusions and frequently accompanied by distinct very small halite cubes (1 and 2 in Fig. 10c). Larger halite cubes occur on the walls of larger, dark empty inclusions (3 in Fig. 10c) and are only visible when facing the empty cavity, the refractive index of halite is similar to that of the host quartz. These fluid inclusions represent a high-salinity brine and are most likely related to the metasomatic changes observed in the decompression textures (Fig. 9a, b).

The fourth and final fluid inclusion type is characterized by clusters of a few dark, relatively large (20–30 μm) monophase inclusions (1 in Fig. 10d) surrounded by a swarm of very small (less than one micron in size) colourless fluid inclusions (2 in Fig. 10d). Some of the larger monophase fluid inclusions show irregular shapes indicating decrepitation (1 in Fig. 10d). No phase transitions during heating-freezing experiments were observed in the monophase inclusions so either they comprise very low density CO₂ or they are empty. A few of the very small fluid inclusions in the near vicinity of the monophase fluid inclusions show a very small vapour bubble (2 in Fig. 10d), which persists above the critical temperature of CO₂ (+31 °C) indicating H₂O. The shape and size of the monophase inclusions are similar to type 2 H₂O-CO₂ fluid inclusions, i.e. they may represent decrepitated H₂O-CO₂ fluid inclusions.

In conclusion, the four fluid inclusion types in the host rocks represent three fluids: a low salinity aqueous, a high-salinity brine, and a H₂O-CO₂ fluid. The salinity of the brine fluid cannot be established with great certainty due to extensive modification of the brine fluid inclusions. The formation of the decompression textures did occur at a temperature at ca. 650 °C (Schenk et al., 1991). The fact that the brine fluid inclusions, present in quartz in the decompression rim, was NaCl-saturated at this temperature imposes a minimum salinity of 74 wt% NaCl (NaCl saturation concentration at 650 °C, Steele-MacInnis et al., 2012). However, Hall and Sterner (1993) and Diamond et al. (2010) observed an increase of the salinity due to water loss, which can be up to 20 wt% (Hall and Sterner, 1993). Water loss would have occurred during implosion. Keeping this in mind, it is probably more realistic to assume a minimum salinity of ca. 50 wt% NaCl equivalent for the brine fluid.

Fluid inclusions in quartz in graphite veins

Indirect evidence on the nature and abundance of fluids of graphite vein formation could be inferred from the vein boundary characteristics and from studying fluid inclusion in quartz that co-precipitated with graphite. Low-salinity aqueous fluid inclusions (type 1) are abundantly present, followed by CO₂ fluid inclusions (type 2). High-salinity brine (type 3), and H₂O-CO₂ fluid inclusions (type 4), on the other hand, are extremely rare.
Sample 1BGM1 (contact between the graphite vein and the host rock, Fig. 4a, c) shows radiating microfractures developed in quartz around graphite. Some of these fractures comprise elongated graphite flakes (1 in Fig. 11a). The radiating microfractures are parallel with transgranular trails of type 1 aqueous liquid-vapour fluid inclusions (1 in Fig. 11b). These small (< 10 μm) low-salinity aqueous fluid inclusions (final melting of ice between −1 and 0 °C, indicating a maximum salinity of 2 wt% NaCl) appear to be identical to the ones found in the host rock samples.

Inside the graphite veins, quartz occurs as nodular segregations or short veins interstratified in massive graphite (sample 2RGM1, Fig. 11a). Most quartz crystals appear milky caused by greyish linear zones (1 in Fig. 11b) comprising elongated variably sized graphite crystals and many tiny fluid inclusions (a few microns in size). Despite the small size of the fluid inclusions, a small vapour bubble that exists at temperatures above +31 °C (critical temperature of CO₂) is present. These fluid inclusion trails are, therefore, most likely identical to the low-salinity aqueous fluid inclusions associated with the radiating
microfractures outside of the vein (Fig. 11b). Similar aqueous fluid inclusions were also found in other samples (e.g., sample 1PGM1, Fig. 11c). In sample 3BGM2, large irregular shaped (20–40 μm) low-salinity aqueous fluid inclusions were found and are always associated with type 4 CO₂ fluid inclusions (see below).

Rare isolated H₂O-CO₂ fluid inclusions (type 2) were found in sample 1PGM1 (1 in Fig. 11d) and in sample 3BGM2 (Fig. 11e). Measuring phase transitions during heating-freezing experiments is in most cases impossible due to observation difficulties. However, the H₂O-CO₂ fluid inclusion shown in Fig. 11e showed melting of solid CO₂ at the triple point of −56.6 °C indicating pure CO₂. Final melting of ice at between ca. −1 and 0 °C, and clathrate dissociation at +10 °C indicates a low salinity of the aqueous phase (< 2 wt. NaCl). Similar trailbound CO₂ fluid inclusions associated with graphite-bearing inclusions were also observed in quartz associated with graphite from Bogola (Luque et al., 2014).

Isolated, regular-shaped (20–30 μm) brine inclusions (type 3) were found in quartz in a graphite vein (e.g., sample 1PGM1 from Paragoda Mine, 1 in Fig. 11f) and are, similar to the H₂O-CO₂ fluid inclusions, rare. The cavities found within quartz are squeezed around a number of solids that occupies most of the available space. An almost invisible liquid film is visible along the cavity walls and a small deformed vapour bubble is squeezed in between the solids and the cavity walls. This is a typical texture of a collapsed (imploded) fluid inclusion (Tourret, 2001).

Monophase liquid and liquid-vapour CO₂ fluid inclusions (type 4) were found in sample 3BGM2 (Fig. 11g, h) occurring either in clusters or in intragranular trails. Relatively large CO₂ fluid inclusions (20–40 μm) are irregular shaped whereas small ones (< 10–20 μm) show regular shapes. Melting of solid CO₂ between −56.6 and −56.7 °C indicates nearly pure CO₂ (Thiéry et al., 1994). Raman analysis of a high-density fluid inclusion (Th = −27.5 °C into the liquid phase) that showed melting at −56.7 °C confirms the presence of CH₄. However, the mole ratio CO₂/(CO₂ + CH₄) must be very close to unity as the melting point is very close to the CO₂ triple point (Thiéry et al., 1994). Liquid homogenization temperature varies widely between −28 and +30 °C indicating densities varying between 1.07 g/cm³ (41.2 cm³/mol) and 0.54 g/cm³ (71.1 cm³/mol). Very small CO₂ fluid inclusions (< 5 μm) are typically associated with larger CO₂ fluid inclusions and have a lower density than the larger fluid inclusion (Fig. 11g).

Clustered, dark monophase inclusions (type 5) were found in samples 1BGM1 and 1PGM1 (2 in Fig. 11d) and appear to be similar to the type 4 fluid inclusions in the host rocks, i.e. they are either empty or comprise very low density CO₂. The occurrence of small aqueous fluid inclusions within the clusters (sample 1PGM1) suggests that the aqueous and these monophase fluid inclusions were possibly formed as a result of partial decrepitation (i.e., H₂O leakage, Bodnar, 2003) of former H₂O-CO₂ fluid inclusions.

4.4. Summary and discussion of results

In conclusion, the most significant result of this study is the contrast between fluids found in the graphite veins and in the host rocks. Fluid inclusions in the host rock near the graphite veins include high-salinity brine (at least 50 wt% NaCl equivalent), H₂O-CO₂, and low-salinity aqueous fluid inclusions. Quartz in the graphite veins, on the other hand, comprises dominantly low-salinity aqueous fluid inclusions and, to a lesser extent, CO₂ fluid inclusions. Imploded brine and H₂O-CO₂ fluid inclusions are also present but rare. The CO₂ does comprise very small quantities of CH₄, indicated by the slight melting point depression (0.1 °C) and Raman analyses.

The relation between the high-salinity brine fluid and CO₂ is demonstrated by one fluid inclusion found in quartz associated with graphite (sample 3BGM2) (Fig. 11i). This H₂O-CO₂ fluid inclusion comprises pure CO₂ (Tm = −56.6 °C, Th = ca. +15 °C into the liquid phase) in a high salinity brine. Melting of the aqueous phase could not be measured due to observation difficulties but freezing of the aqueous phase was clearly visible at temperatures between −75 and −85 °C, indicating a salinity of ca. 25 wt% NaCl (Wilkinson, 2017). This fluid inclusion demonstrates that a high-salinity fluid coexisted with CO₂ and that both fluids were heterogeneously trapped under conditions of fluid-fluid immiscibility. The association of irregular shaped relatively large low salinity aqueous fluid inclusions (type 1) with type 4 CO₂ fluid inclusions in sample 3BGM2 indicates refilling of early CO₂ fluid inclusions by a later low salinity aqueous fluid.

The radiating microfractures at the graphite vein-host rock contact indicate that the fluid pressure during the final stage of graphite vein formation was sufficiently high to cause a fracturing of the wall rock and to inject low-salinity aqueous fluids into the host rock. The large abundance of low-salinity aqueous fluid inclusions in quartz in the graphite veins shows that during the final stage of graphite formation, graphite was in equilibrium with a low-salinity H₂O-rich fluid.

5. Formation of graphite veins

5.1. P-T conditions, fluid source, and fluid mobility

The presence of a high-density CO₂ fluid inclusion in quartz in vein graphite from Bogala (Fig. 11j), and the wall-rock alteration assemblage including chlorite and biotite can be used to limit the P-T conditions of graphite vein formation. The high-density CO₂ fluid inclusion (Th of −27.5 °C into the liquid phase, density of 41.3 g/cm³) implies a pressure of ca. 7 kbar at ca. 700 °C by extending the WC P-T path (Fig. 12). The wall-rock alteration mineral assemblage including biotite and chlorite indicates a relatively low temperature below ca. 500 °C at a pressure of ca. 1–2 kbar according to the WC P-T path (Fig. 12). Therefore, graphite formation appears to have started at granulite facies P-T conditions and advanced during most of the decompression and cooling stages. This interpretation is supported by the repeated crack-seal process as the mechanism of vein graphite formation (Katz, 1987).

Fluid inclusion data presented in this study and the published stable isotope data reviewed in Section 3 show that vein graphite is primarily formed from CO₂ fluids. The carbon isotope signature (Fig. 5) clearly identifies mantle CO₂ as the primary source. Some of the CO₂ may also have been derived from sedimentary organic matter that reacted with H₂O released from metamorphic dehydration reactions producing CO₂ during prograde metamorphism. Considering the fact that the graphite veins were formed after peak metamorphism, it is highly unlikely that CO₂ was directly derived from the mantle. Therefore, we propose that initially mantle CO₂ was introduced into the lower crust and trapped in UHT granulites during WC-HC collision (Fig. 3a), most likely because of slab breakoff and subsequent upwelling of the mantle asthenosphere (Davies and Von Blanckenburg, 1995). This scenario would also explain post-collisional rapid uplift as depicted in the P-T path (Fig. 12, Hiroi et al., 2014; Dharmapiya et al., 2017). The upwelling mantle asthenosphere would result in (1) heat supply to the lower crust causing UHT metamorphism, and (2) concentration of CO₂ into the lower crust (Santosh and Omori, 2008a, 2008b). The CO₂ is derived from decarbonation reactions in the mantle and mobilized along structural discontinuities and/or in magma (Santosh and Omori, 2008a, 2008b). The CO₂ responsible for graphite precipitation was derived from the nearby UHT granulites in central Sri Lanka during decompression at ca. 800 °C (Fig. 12). Decompression associated with fast uplift (Hiroi et al., 2014; Dharmapiya et al., 2017) will mobilize CO₂ (either trapped in fluid inclusions or occurring in isolated pockets) due to the increasing difference between the fast decreasing lithostatic pressure and the fluid pressure. CO₂ fluids have a limited mobility due their high wetting angles (Watson and Brennan, 1987). However, as suggested by Newton and Tsunogae (2014), brines would have enhanced microscale dissolution-predenition processes (Putnis and Austrheim, 2010) and, therefore, significantly increased the CO₂ mobility laterally and vertically. Both the CO₂ fluid flow and graphite precipitation must have
been a continuous process while the WC and HC lower crustal rocks were exhumed to middle and shallow crustal levels.

It is expected that the brine and CO2-rich fluids were focused into narrow fluid pathway zones, a process that was driven by lateral gradients in fluid pressure (Ridley, 1993). Considering the fact that in the middle crust the fluid pressure is equivalent to the lithostatic pressure, lateral variations in the fluid pressure can only be explained by lateral variations in the stress field (Ridley, 1993), such as pre-existing faults or shear zones. The alignment of the graphite deposits roughly parallel to the HC-WC tectonic boundary (Fig. 1) confirms the likelihood of such a scenario.

5.2. Graphite precipitation

Generally, graphite will precipitate from a carbon-oxygen-hydrogen (C-O-H) fluid if the fluid carbon solubility decreases or alternatively if the fluid carbon content increases (Luque et al., 1998; Luque et al., 2014; Huizenga, 2011). Processes that result in a decreased carbon solubility include fluid cooling, or infiltration of the fluid into a more reduced host rock environment. The fluid carbon content increases because of mixing between a CO2-rich and a CH4-rich fluid, or alternatively due to removal of H2O from the fluid phase caused by retrograde hydration reactions (e.g., Luque et al., 1998).

For Sri Lankan graphite we can rule out fluid-fluid mixing as a possible process as no evidence for CH4-rich fluids was found in any of the studied samples. Fluid cooling, on the other hand, is a distinct possibility (Huizenga, 2011; Luque et al., 2014). The retrograde P-T path for the WC (Fig. 12) shows that cooling became significant at temperatures below ca. 650 °C and 3–4 kbar after the initial stage of near-isothermal decompression. During cooling, graphite precipitates according to the net reaction (Huizenga, 2011):

\[
\text{CO}_2 + 2 \text{H}_2 \rightarrow \text{C} + 2 \text{H}_2\text{O} \tag{3}
\]

Fluid reduction, driven by the redox difference between the relatively oxidized CO2 fluid and the relatively reduced host rock, is also a possibility (Huizenga and Touret, 2012):

\[
\text{CO}_2 \rightarrow \text{C} + \frac{1}{2} \text{O}_2 \tag{4}
\]

CO2 reduction does not require any change in pressure and/or temperature. Therefore, CO2 reduction was probably the main graphite precipitation process at granulite facies conditions (ca. 700 °C, 7 kbar), i.e. at the start and during the near-isothermal decompression stage of the retrograde P-T path. Pyrite is locally associated with Sri Lankan vein graphite (Katz, 1987), which could indicate that pyrrhotite acted as a reducing agent for CO2, producing graphite and pyrite (e.g., Kirilova et al., 2017).

Both fluid cooling and fluid reduction will lead to a relative increase of the H2O content in the fluid phase and initiate retrograde hydration reactions (Luque et al., 2014). As mentioned earlier, the graphite veins do show alteration haloes characterized by hydrous mineral phases. The removal of H2O due to hydration would shift Reaction (3) to the right side causing more graphite to precipitate. Such a feedback system is similar to what was proposed for the Borrowdale graphite deposit in the UK (Ortega et al., 2010). The progress of the hydration reactions will depend on both the temperature and the H2O activity in the fluid phase.

5.2.1. C-O-H thermodynamic calculations

Thermodynamically calculations allow us to constrain the oxygen fugacity during graphite precipitation (e.g., French, 1966; Ohimoto and Kerrick, 1977; Huizenga, 2001). A carbon-saturated (graphite present) C-O-H fluid has six unknowns at a fixed fluid pressure and temperature including the mole fractions (X) of H2O, CO2, CH4, H2, CO, and the fluid oxygen fugacity (fO2) (e.g., French, 1966; Ohimoto and Kerrick, 1977). Four independent equilibria can be written: CO + 1/2 O2 ⇌ CO2, H2 + 1/2 O2 ⇌ H2O, CH4 + 2 O2 ⇌ CO2 + 2 H2O, and C + O2 ⇌ CO2.

Further, the sum of the mole fractions (ignoring the extremely low value of XO) must be unity: XH2O + XCO2 + XCH4 + XCO + XH2 = 1. Having five equations and six unknowns, we need to fix one compositional variable in order to solve this system. In this case, we can set the \(X_{\text{CO}_2}/(X_{\text{CO}_2} + X_{\text{CH}_4})\) ratio to a value very close to unity. In addition, the
Graphite in southern Kerala shows δ lighter (0.5 < log10 f_{O_2} are around the fayalite-magnetite-quartz (FMQ) buffer (Soman et al., 1986; Radhika and Santosh, 1996). The graphite formation during melt crystallization after peak metamorphism (Luque et al., 2014). Similar to Sri Lanka, graphite in those deposits is not related to a host rocks, in shear-related fractures (Radhika and Santosh, 1996), or in micro-shear zones found in other granulite terranes (Newton, 1989).

The graphite veins in Sri Lanka are unique because of the large scale of their occurrence and their high crystallinity. Similar graphite veins are found in high-grade metamorphic terranes of southern India (Luque et al., 2014) but at a smaller scale though. This study has shown that a number of factors have contributed to the formation of Sri Lankan vein graphite. Each one is critical in the process, i.e. it is the combination of these factors that allows the formation of these unique deposits. They include: (1) Temporary storage of large amounts of mantle CO2 in UHT granulites during the continent amalgamation. CO2 streaming from the mantle asthenosphere (Newton et al., 1980) appears to be typical for UHT granulites (Santosh and Omori, 2008b; Touret and Huizenga, 2012; Touret et al., 2016); (2) fast exhumation in order to release CO2 from UHT granulites; (3) Presence of brine fluids to facilitate CO2 mobility. Brines can also explain the presence of alteration minerals (Rumble, 2014) including Cl-rich biotite, Cl-rich hornblende and Cl-scapolite (Kehelpannala, 1995); (4) Pre-existing structures (e.g., faults, shear zones) that act as fluid focussing zones; (5) Graphite precipitation caused by (a) CO2 reduction, (b) fluid cooling, and (c) retrograde hydration reactions.

The reason for the high crystallinity of vein graphite in Sri Lanka remains an unresolved issue that is beyond the scope of this paper and requires more research. Luque et al. (2009) demonstrated for the Borrowdale graphite deposit that high crystalline graphite precipitated from a moderate-temperature (ca. 500 °C) fluid, i.e. the crystallinity of hydrothermal graphite appears not to be related to the temperature only (Luque et al., 2014).

Finally, Sri Lankan graphite veins are equivalent to carbonated mega-shear zones found in other granulate terranes (Newton, 1989). Here, the oxidized environment is probably caused by sulphate-bearing brines (Newton and Manning, 2005). In Sri Lanka, the relatively reduced nature of the host rocks allowed the formation of graphite. Large-scale fluid streaming from the mantle (Newton et al., 1980) appears to be typical for UHT granulites, a critical rock type for the amalgamation and disruption of supercontinents (Touret and Huizenga, 2012; Touret et al., 2016).

Acknowledgments

We would like to thank J.P. Gremilliet (Terraire Genesis) for providing thin sections and Alberto Vitale-Brovarone for his help with the microscope photography. JLRT thanks M. Santosh for inviting him to Xian and the ECROFI organizers for their support. KVWK thanks the authorities of Bogala Lanka Graphite Ltd. and the Kahatagaha graphite mine of Sri Lanka for granting him permission to collect samples for this study. Research conducted by JLRT in Paris and KVWK’s fieldwork in Sri Lanka, including sample export, were self-sponsored. JMH was funded by James Cook University; FP was funded by Sorbonne University. We would like to thank Elena Crespo Feo, Fons van den Kerkhof, and the guest editor Alexandre Tarantola for their constructive comments and suggestions. This paper is a contribution to the IGCP Project 648 on “Supercontinent Cycles and Global Geodynamics”.

References

Rodas, M., Clarke, S.M., 2010. The graphite deposit at Borrowdale (UK): a cata-

