HIGH-PRESSURE MELT AND FLUID INCLUSIONS IN MINERALS OF GARNET GRANULITES/ECLOGITES (EASTERN PAMIR)

V.P.Chupin¹, D.V.Kuzmin¹, and J.L.R.Touret²

¹ Institute of Mineralogy and Petrography, Novosibirsk, Russia

² Department of Petrology and Isotope Geology, Vrije Universiteit, Amsterdam, The Netherlands

Introduction

South Estern Pamir belongs to the largest Pamir Malayan collisional orogen (Fig. 1) and is characterized by abnormally thick (to 70- 3 km) continental crust. The only source of information on the composition of the lower crust and upper mantle under this region are deep stated xenoliths in Neogene alkaline healtoid diatremes. Xenoliths consist of mantle and lower outstal rocks. The latter are represented by various granulites (Grt K; Grt Opx (0x, Grt B (0x)) and biotite learing) and garnet clinopyroxenites.

Minerals in these xenoliths contain primary melt and fluid inclusions, which provide a wealth of data on the origin and evolution of these lower-crustal and mantle rocks.

Results

Primary melt inclusions have been found in garnet, orthopyroxene, kyanite and some other minerals from all lower oustal granulites and Pl edogites, and mantle eclogites (Fig. 2). Almost all inclusions in garnet are partly decrepitated, but not in other minerals. These inclusions contain glass-heterogeneous fluid bubble<u>+</u>several microcrystallites. According to freezing data and Raman analysis, the fluid phase of melt inclusions in garnet and other minerals from all studied rocks is represented mainly by high density CO₂.

Some grains of garnet from eclogite, Grt Qx legranulite, and Ky and Opx having granulites contain primary inclusions of high density CO₂ (>0,8 g/cm³) and syngenetic melt inclusions, that imply the early stages of granulite and eclogite crystallization in the presence of both CO₂ subtracted melts and free CO₂ in fluid.

High external trapping pressure of melt inclusions in quartz and other minerals is suggested by the formation (segregation) of additional bubbles of very dense CO₂ during heating runs. Melt inclusions in garnet from Cpx **P** granulite homogenized at 1020°C and in quartz from massive Grt **F** granulites homogenized at 1000°C during heating experiments in an apparatus with a high (12 kbar) external pressure. These data are in good agreement with mineral estimates, about 940°C for temperature and above 12 kbar for pressure.

The chemical composition of trapped melts in garnet and apatite from Cpx Pl granulite correspond to a peraluminous K Mdacite and a strongly peraluminous K Nurhyodacite respectively (Table 1). Inclusions in garnet and other minerals from massive and gneissic Ky gnaulites correspond mainly to a strongly peraluminous subalkaline K ich rhyodacites (Table 1). Inclusion glass in minerals from Grt-Cpx-Pl granulite and from massive Ky-granulities is enriched in chlorine, whereas inclusion glass in gneissic Ky-granulites does not contain detectable chlorine (Table 1 and Fig. 2). In inclusions occurring in quartz from massive Grt Kg granulites, the CO₂ content of trapped melt was estimated to be roughly 1,5 1,8 wt.%. Water and trace element contents are given in the Table 2 and in the Fig. 3 (data of ionic microprobe analyses). The low HREE contents seem to be due to the crystallization of early garnet.

1 - In game from Grt-Cpx-PI granulite; 2 - in kyanite, gamet, apatite, zircon and quartz from massive Ky-granulites; 3, 4 - in gamet (3), kyanite, apatite and monazite (4) from gnessic Ky-granulites

Table 2. Frase element composition (SIMS) of glasses in unheated melt nclusions and amphibole from Estern Pamir xenoliths					
	Grt-Cpx-Pl granulite		Grt-Ky granulite		
	MI in Grt	I in Grt Amph MI in Qtz			
ppm					
Cr	236,31	386,05	3,51	1,40	2,95
Sr	111,58	107,06	79,20	343,66	250,90
Zr	121,09	44,27	140,82	128,42	134,40
Ba	341,13	184,36	229,64	530,78	433,00
Ce	38,67	57,24	218,39	214,21	164,30
Sm	1,69	5,94	10,06	9,24	5,40
Er	2,48	0,76	0,62	0,74	0,44
Th	22,26	0,28	40,59	59,67	21,23
Yb	2,98	0,53	0,35	0,44	0,31
Dy	3,98	1,66	1,19	1,32	1,05
Eu	0,68	1,30	0,91	1,46	1,50
Nd	6,73	31,74	74,88	68,76	60,70
La	29,58	19,31	96,86	107,47	110,80
Nb	0,47	0,31	2,33	3,30	1,74
Y	24,63	4,12	3,02	2,08	1,53
Ti	1764,68	16039,92	1645,18	1405,44	1235,00
в	11,46	0,80	12,69	14,03	7,80
Li	150,86	6,13	2,86	2,88	6,30
Be	1,26	1,17	8,61	6,73	3,80
H ₂ O wt.%	2,38	0,45	3,96	3,01	0,83
H_2O^*	2,14		3,56	2,70	0,75

H2O* - estimation for the possible 10% melting of the host mineral during homogenization

Conclusion

 The occurrence of melt inclusions in garnet and other minerals from major types of deep stated xenoliths in Eastern Pamir indicates the importance of magmatic processes during the formation of the lower crust and upper mantle in this region.

CO₂ took an active part in these processes.

- All minerals (including subliquidus garnet) of lower- custal Grt Qx Rand Grt Kygranulites crystallized from (or with the participation of) high kmperature K Nidacite and K ich strongly peraluminous rhyodacite melts, characterized by a low HREE content. This fact suggests that incongruent melting of K haring basic and more acid high atmina rocks took place in the lower crust, at pressure above 12 kbar, with the formation of acid magmas and crystallization of dense eclogite or granulite paragenesis (garnet±clinopyroxene).