1. Introduction

The finding of CO2 fluid inclusions in lower crustal rocks, first in southern Norway (Touret, 1971), then in granulites worldwide, has demonstrated the unambiguous relationship between CO2 and high-grade metamorphism (e.g., Santosh and Omori, 2008). Initially, CO2 was considered to be the only significant fluid in granulites but this idea was subsequently modified by including concentrated brines as an additional typical granulite fluid (e.g., Newton et al., 1998). Observations that support the idea of fluid-assisted granulite metamorphism (see Touret and Huizenga, 2011, 2012, for an overview) include the occurrence of fluid inclusions, field evidence (e.g., incipient charnockites, Santosh et al., 1990), and petrologic evidence such as intergranular metasomatic reactions (e.g., Touret and Nijland, 2012).

The debate on how CO2 has been introduced into the rock system at granulite facies P-T conditions is still continuing (e.g., Touret and Huizenga, 2011). Internal CO2 generation is a distinct possibility, which can be caused by, for example: (1) carbon oxidation in graphite-bearing sediments by H2O derived from dehydration reactions (Touret, 1971) or crystallising granitic melts (Hollister, 1988), (2) Fe3+ reduction during partial melting in graphitic metapelites (Cesare et al., 2005), or (3) selective H2O fractionation into a melt phase (Pyfe, 1973; Cesare and Maineri, 1999) during which the CO2 content of the fluid phase increases and may even become carbon supersaturated resulting in graphite precipitation (e.g., Luque et al., 1998, 2012).

Alternatively, CO2 can also be derived from an external source, in particular the mantle. The idea of mantle derived CO2 infiltration into the lower crust was first proposed in 1980 by Newton et al. (1980), referred to as the “carbonic wave”. This idea was opposed based on the fact that CO2 is not able to migrate through lower crustal rock over large distances (Watson and Brenan, 1987). This argument, however, became less relevant when it was realised that CO2 transportation occurred through mantle-derived magmas that are emplaced into the lower crust at granulite facies metamorphic conditions (e.g., Touret, 1992). Further, supporting evidence for a CO2 mantle source has been obtained from the carbon isotopic signature of CO2 in fluid inclusions (Jackson et al., 1988) and graphite (Farquhar and Chacko, 1991; Santosh and Wada, 1993a,b), and the helium isotope signature in fluid inclusions (e.g., Dunai and Touret, 1993). There is in our opinion convincing evidence from numerous granulite occurrences that CO2 infiltration has occurred into the lower crust. This does, however, not necessarily mean that CO2 was actively involved in the stabilisation of orthopyroxene and graphite genesis; CO2 infiltration may have occurred in an already dry rock (e.g., Pili et al., 1998; Harley, 2004).

1.1. Graphite in granulites

Graphite occurs frequently in granulite facies metamorphic rocks (e.g., Santosh and Omori, 2008). In some cases the graphite content is so large that it has influenced the local name of the formation (Système du
Graphite, Madagascar, e.g. Berglund and Touret, 1976; Collins et al., 2012. Peak metamorphic occurrences of graphite in ultrahigh temperature granulites ($T > 1000^\circ$C) have, to our knowledge, not been reported. Large-scale hydrothermal graphite veins post dating granulate metamorphism are found in e.g., Sri Lanka (e.g., Binu-Lal et al., 2005) and New Hampshire (Rumble et al., 1986).

Petrographical observations and carbon stable isotope data show that graphite in high-grade metamorphic rocks can be the result of different processes, notably: (1) pre- or retrograde heating of pre-metamorphic organic matter in detrital rocks (e.g., Andreae, 1974; Rumble et al., 1977; Wada et al., 1995); (2) carbonate reduction in former calcareous rocks (Nockleberg, 1973; Perry and Ahmad, 1977), and (3) precipitation from a C–O–H fluid (i.e., epigenetic graphite) (e.g., Luque et al., 1998).

Examples of granulite facies epigenetic graphite include occurrences in granulite terrains in southern India (Santosh and Wada, 1993a,b; Radhika and Santosh, 1996; Farquhar et al., 1999; Santosh et al., 2003; Satish-Kumar et al., 2011) and the southern Iberian Massif (Rodas et al., 2000; Crespo et al., 2004). An example of high-temperature precipitated graphite is shown in Fig. 1. Here, graphite occurs in the leucosomes of migmatites (Fig. 1), indicating that a carbon-saturated fluid precipitated graphite is shown in Fig. 1. Here, graphite occurs in the leucosomes of migmatites (Fig. 1), indicating that a carbon-saturated fluid precipitated graphite (Satish-Kumar et al., 2011). The migmatites are the result of leucosome-dominated partial melting at $T > 850^\circ$C (Satish-Kumar et al., 2011).

It has been argued that graphite facies epigenetic graphite can be attributed to the infiltration of externally derived CO$_2$ fluid into a relatively reduced host-rock environment (Glassley, 1982; Lamb and Valley, 1984; Farquhar and Chacko, 1991; Santosh and Wada, 1993a,b; Radhika and Santosh, 1996; Binu-Lal et al., 2003; Santosh and Omori, 2008). As a result, the presence or absence of graphite in granulites has been used as an argument either supporting (e.g., Santosh and Omori, 2008) or opposing (Lamb and Valley, 1984) infiltration of externally derived CO$_2$ into lower crustal rocks, respectively. Thermodynamic calculations of the C–O–H fluid system for relevant P–T–fO_2 conditions demonstrate that any significant CO$_2$ infiltration should result in the precipitation of noticeble quantities of graphite if the host-rock has a fO_2 that allows graphite to occur as a stable phase (Glassley, 1982; Lamb and Valley, 1984, 1985).

The main purpose of this study is to probe whether the presence or absence of graphite in granulites can be used as an indication supporting or opposing CO$_2$ infiltration into lower crustal rocks. We will discuss the conditions under which graphite will precipitate when external CO$_2$ enters lower crustal rocks that either comprise a H$_2$O-bearing C–O–H fluid or are completely dry, using thermodynamic calculations. We will also discuss the effect that retrograde metamorphism has on the ability of a fluid to either precipitate or consume graphite.

2. CO$_2$ infiltration into H$_2$O-bearing lower continental crust: C–O–H fluid system

2.1. Introduction

We will illustrate thermodynamic calculations in the graphite–C–O–H system by using isoaric-isothermal C–O–H ternary diagrams (e.g., Huizenga, 2011). These diagrams are perfectly suitable to illustrate what happens when CO$_2$ infiltrates into a relatively reduced environment. Fluid composition calculations in the C–O–H system are explained in numerous papers (e.g., French, 1966; Ohmoto and Kerrick, 1977; Huizenga, 2001, and references therein) and not repeated here. Thermodynamic data for the fluid species and graphite for calculating equilibrium constants for the independent reactions between the different fluid species were taken from Holland and Powell (1998). Fugacity coefficients for the fluid species were calculated as described by Shi and Saxena (1992) assuming ideal mixing. The use of a different method such as described by Zhang and Duan (2010) results only in very small concentration differences of the dominant fluid species for the P–T range of interest (1–15 kbar, 400–1100 °C). All calculations were carried out using an updated version of the COH Excel spreadsheet (Huizenga, 2005).

The Fayalite–Magnetite–Quartz buffer (FMQ) is used as a reference for the oxygen fugacity, which is calculated from the equation given by Ohmoto and Kerrick (1977): $\log_{10} fO_2^{FMQ} = -25738/T_{kelvin} + 9.00 \pm 0.092 (P_{fam} -1)/T_{kelvin}$. The choice of using FMQ as a reference fO_2 buffer is justified by the fact that high-grade metamorphic rocks have typically oxygen fugacities around the FMQ buffer (Böhlen and Essene, 1977; Lamb and Valley, 1985; Skippen and Marshall, 1991; Harlov, 1992, 2000; Török et al., 2005). In this study, we have restricted our modelling to $\log_{10} fO_2^{FMQ} = 2$; granulites that are more reduced have, to our knowledge, not been reported so far.

The composition of a carbon-saturated fluid, i.e. a fluid of which the carbon activity ($a_{CO_2}^{fluid}$) is 1 (i.e., graphite present), varies with the oxygen fugacity of the fluid phase (β^{fluid}). These carbon-saturated fluids are situated on the carbon saturation surface (Fig. 2a). The position of the carbon saturation surface shifts with changing P and T, i.e. it moves closer to the C-apex with isothermal decompression whereas it does the opposite with isobaric cooling (e.g., Luque et al., 1998). Fluids that have compositions above the carbon saturation surface (grey field in Fig. 2a) are supersaturated in carbon ($a_{CO_2}^{fluid} > 1$), i.e. these fluids will precipitate graphite. On the other hand, fluids that have compositions below the carbon saturation surface are undersaturated with respect to carbon ($a_{CO_2}^{fluid} < 1$). Therefore, these fluids have the ability to consume graphite if present.

 Oxidised carbon-saturated fluids (atomic O/(O+H) or $X_O > 1/3$) comprise H$_2$O, CO$_2$, and CO whereas reduced carbon-saturated fluids ($X_O < 1/3$) consist of H$_2$O, CH$_4$, and H$_2$ (Fig. 2b). The fO_2 range for a H$_2$O–CO$_2$–CO$_2$ fluid $\pm CO$ dominated carbon-saturated fluid is much smaller compared to the fO_2 range for a H$_2$O–CH$_4$–H$_2$ carbon-saturated fluid (Fig. 2a) (e.g., Ohmoto and Kerrick, 1977). Graphite is absent ($a_{CO_2}^{fluid} < 1$) if fO_2 exceeds the upper fO_2 limit for graphite to exist as a stable phase ($\log_{10} fO_2^{FMQ} = 0.60$ for $P = 8$ kbar and $T = 900^\circ$C, see Fig. 2a). Carbon-saturated fluids are almost pure CO$_2$ when X_O approaches 1 ($X_O \rightarrow 1$) at $T < 700$–800 °C. However, at $T > 700$–800 °C, carbon-saturated fluids of which $X_O \rightarrow 1$ do contain significant amounts of CO (Fig. 2c,d), i.e. the carbon saturation surface intersects the C-O binary above CO$_2$ (Fig. 2c), which implies that a pure CO$_2$ fluid is carbon undersaturated. Consequently, the mole fraction of CO in a C–O–H fluid of which $X_O \rightarrow 1$ is an indication for the degree of carbon undersaturation for a pure CO$_2$ fluid (Fig. 2c,d).
2.2. CO$_2$ infiltration and graphite precipitation in the C–O–H system

The initial phase of isobaric–isothermal CO$_2$ infiltration involves the mixing of a carbon-undersaturated granulate C–O–H fluid with externally derived CO$_2$ during which the fluid mixture becomes enriched in CO$_2$, and subsequently approaches carbon saturation (stage 1 in Fig. 3, e.g., Lamb and Valley, 1984, 1985). Any further externally derived CO$_2$ that enters the system will subsequently mix with the carbon-saturated C–O–H fluid (stage 2 in Fig. 3), which results in graphite precipitation as the relatively oxidised (CO$_2$-rich) mixed fluid is reduced until fluid–rock redox equilibrium is achieved. This paper will focus solely on the second stage of the CO$_2$ infiltration process. For clarity, we will refer to the infiltrating CO$_2$ as the external fluid and the carbon-saturated fluid (present as an intergranular fluid in the granulate) as the internal fluid. Mixing of the external CO$_2$ and the internal carbon-saturated C–O–H fluid (stage 2, Fig. 3) may result in different graphite precipitation scenarios, which will be explained in the next sections using an example of CO$_2$ infiltrating a host-rock ($\log_{10} f^{\text{eq}}_{\text{rock}} = \text{FMQ} - 2$) at 5 kbar and 1000 °C (Fig. 4a–d).

2.2.1. Mixing of external and internal fluid: carbon-undersaturated fluid

Mixing of externally-derived CO$_2$ and the internal carbon-saturated C–O–H fluid can result in a relatively oxidised carbon-undersaturated fluid if the external–internal fluid ratio is relatively large. In this case, the composition of the mixed fluid is situated below the carbon saturation surface (Fig. 4b,c), which is caused by the fact that CO$_2$ is situated below the carbon saturation surface for the given P–T conditions (Fig. 4b,c). Therefore, the fluid will firstly adjust to the relatively reduced environment by its reduction to produce CO according to the net reaction:

$$\text{CO}_2 \rightarrow \text{CO} + \frac{1}{2} \text{O}_2 \text{ (to rock)} \quad (1)$$

where the released O$_2$ is absorbed by the host-rock (i.e., oxygen sink). As a consequence, the fluid composition becomes more reduced and moves towards the carbon saturation surface (path 1a in Fig. 4c). The fluid becomes carbon saturated ($q^{\text{eq}}_{\text{H}} = 1$) as soon as it reaches the carbon saturation surface. At this stage there are two scenarios as how to fluid re-equilibration may continue. The first one is that the above reaction will stop and the CO$_2$ (+CO) fluid will start precipitating graphite according to the net reactions (path 1b in Fig. 4c):

$$\text{CO}_2 \rightarrow \text{C} + \frac{1}{2} \text{O}_2 \text{ (to rock)} \quad (2)$$

and (to a lesser extent)

$$\text{CO} \rightarrow \text{C} + \frac{1}{2} \text{O}_2 \text{ (to rock)} \quad (3)$$

in which the fluid becomes more reduced as it approaches $f^{\text{rock}}_{\text{eq}}$. In this case the fluid composition will change along the carbon saturation surface (path 1b in Fig. 4c) while the reaction proceeds until $\log_{10} f^{\text{eq}}_{\text{rock}} = \log_{10} f^{\text{eq}}_{\text{H}} + \text{FMQ} = 2$. In this scenario, the driving force for re-equilibration is the redox difference between the fluid phase...
and the host-rock ($f_{\text{O}_2}^{\text{fluid}} > f_{\text{O}_2}^{\text{rock}}$), i.e. graphite precipitation occurs under carbon-saturated conditions ($a_{\text{C}}^{\text{fluid}} = 1$).

The second option is that the CO$_2$ fluid continues its reduction without graphite precipitation (reaction 1) until it reaches fluid–rock redox equilibrium ($\log_{10} f_{\text{O}_2}^{\text{fluid}} = \log_{10} f_{\text{O}_2}^{\text{rock}} = \text{FMQ} - 2$) (path 2a in Fig. 4c) during which it becomes carbon supersaturated. Consequently, graphite precipitation occurs (while $a_{\text{C}}^{\text{fluid}}$ is decreasing) according to reactions 2 and 3 while $f_{\text{O}_2}^{\text{fluid}}$ remains constant until the fluid reaches its equilibrium composition on the carbon saturation surface (i.e., $a_{\text{C}}^{\text{fluid}} = 1$) (path 2b in Fig. 4c). In this case, the driving force for re-equilibration is the carbon-supersaturated state of the fluid phase.

2.2.2. Mixing of external and internal fluid: carbon-supersaturated fluid

Here, the mixed fluid is carbon supersaturated as its composition is somewhere on the mixing line that is situated above the carbon saturation surface (Fig. 4b,d). The re-equilibration process will firstly involve the reduction of the mixed fluid without graphite precipitation (reaction 1) until it reaches fluid–rock redox equilibrium ($\log_{10} f_{\text{O}_2} = \text{FMQ} - 2$) (path 3a in Fig. 4d). This is followed by graphite precipitation (while $a_{\text{C}}^{\text{fluid}}$ is decreasing) at constant $f_{\text{O}_2}^{\text{fluid}}$ (= $f_{\text{O}_2}^{\text{rock}}$) according to reactions 2 and 3 (path 3b in Fig. 4d).

2.2.3. How much graphite can precipitate?

The relative amount of graphite that can precipitate at isobaric-isothermal conditions depends on $f_{\text{O}_2}^{\text{rock}}$ and the external–internal fluid ratio. It can be determined by taking the difference between the atomic carbon content (n_c in mol%) of the external–internal fluid mixture and that of the internal carbon-saturated fluid (Δn_c, Fig. 5a). However, n_c of the external–internal fluid mixture is variable as it depends on the mixing ratio. Nevertheless, the maximum relative

![Fig. 3](image-url)
Fig. 3. Diagram illustrating the different stages of isobaric-isothermal external CO$_2$ infiltration into granulites. The initial stage (1) includes mixing of externally derived CO$_2$ (referred to as external fluid in the text) with the carbon-undersaturated fluid present in the host rock causing the mixed fluid to reach carbon saturation. Continuous CO$_2$ infiltration (stage 2) will result in mixing of CO$_2$ and the carbon-saturated fluid (referred to as internal fluid in the text). The resulting fluid mixture will either be carbon under- or supersaturated depending on the mixing ratio. Note that stage 1 becomes irrelevant if CO$_2$ infiltration occurs in lower crustal rocks that already comprise (biogenic) graphite.

![Fig. 4](image-url)
Fig. 4. (a) Bottom part of an isobaric-isothermal ($P = 5$ kbar, $T = 1000^\circ$C) ternary C–O–H diagram showing the compositional variation of a carbon-saturated fluid (thick line) with variable $f_{\text{O}_2}^{\text{fluid}}$ relative to FMQ (open circles, labelled in log$_{10}$ units). Thin solid line: variation of fluid composition at $\log_{10} f_{\text{O}_2}^{\text{fluid}} = \text{FMQ} - 2$ as a function of $a_{\text{C}}^{\text{fluid}}$ (black squares). (b) Bottom part of a C–O–H diagram showing the mixing line between CO$_2$ and a carbon-saturated C–O–H fluid within a host rock with $\log_{10} f_{\text{O}_2}^{\text{rock}} = \text{FMQ} - 2$ at $P = 5$ kbar and $T = 1000^\circ$C. Insets are enlarged in (c) and (d). Mixing of external CO$_2$ with an internal carbon-saturated C–O–H fluid will result in either a carbon under- or supersaturated fluid (dashed or dotted mixing line, respectively) depending on the mixing ratio. (c) Illustration of graphite precipitation from a carbon-undersaturated fluid. This fluid requires CO$_2$ reduction (reaction 1) in order to get carbon-saturated (path 1a). Graphite precipitation occurs as soon as the reduction of CO$_2$ has resulted in a carbon-saturated CO$_2$–CO fluid. Graphite precipitation from this fluid will proceed at conditions of carbon saturation while $f_{\text{O}_2}^{\text{fluid}}$ decreases until $f_{\text{O}_2}^{\text{fluid}} = f_{\text{O}_2}^{\text{rock}}$ (path 1b). Alternative, CO$_2$ reduction continues until $f_{\text{O}_2}^{\text{fluid}} = f_{\text{O}_2}^{\text{rock}}$ (path 2a). Consequently, this CO$_2$–CO fluid will be carbon supersaturated and subsequent graphite precipitation occurs at constant $f_{\text{O}_2}^{\text{fluid}}$ at decreasing $a_{\text{C}}^{\text{fluid}}$ (path 2b). (d) Illustration of graphite precipitation from a carbon-supersaturated fluid. CO$_2$ will first reduce without graphite precipitation until $f_{\text{O}_2}^{\text{fluid}} = f_{\text{O}_2}^{\text{rock}}$ (n_c of the fluid remains constant, path 3a), after which graphite precipitation will occur while $f_{\text{O}_2}^{\text{fluid}}$ remains constant, i.e. (path 3b).
amount of graphite that can precipitate can be determined if it is assumed that the external–internal fluid mixture has a n_C value corresponding to that of pure CO$_2$ ($n_C = 33.3$ mol%). This approximation is valid when the amount of external CO$_2$ that infiltrates is relatively large compared to the internal granulite fluid. The maximum relative amount of graphite that can precipitate shows a positive correlation with the H$_2$O mole fraction of the carbon-saturated fluid phase and varies with P, T, and $f_{O_2}^{\text{rock}}$ (Fig. 5b,c). The absolute amount of graphite that precipitates depends on the relative amount and the quantity of CO$_2$ fluid that infiltrates into the rock.

2.3. C–O–H fluid system: conclusions

The following can be concluded on graphite precipitation as a result of CO$_2$ infiltration into rocks at granulite facies P–T conditions:

1. Graphite precipitation associated with CO$_2$ infiltration is only possible for host-rock redox conditions with maximum $\log_{10} f_{O_2}^{\text{rock}}$ values varying between $-\text{FMQ} + 0.2$ and $-\text{FMQ} - 2.0$ depending on the granulite facies P–T conditions (Fig. 6). In

Fig. 5. (a) Determination of the relative amount of graphite that can precipitate from an external–internal fluid mixture (black square) for $\log_{10} f_{O_2}^{\text{fluid}} = \text{FMQ} - 2$ and FMQ – 1.5. For FMQ – 2, the relative amount of graphite that precipitates (Δn_C) is 21.3 mol% (32 minus 10.7), for FMQ – 1.5, this amount is 11.8 mol% (32 minus 20.2). The maximum relative amount of graphite that can precipitate is 22.6 mol% for FMQ – 2 (33.3 minus 10.7). See text for further discussion. (b) Pressure–temperature diagram showing (1) the mole fraction of H$_2$O (thin solid lines) of a carbon-saturated C–O–H fluid ($\log_{10} f_{O_2}^{\text{fluid}} = \text{FMQ} - 1$), and (2) the maximum relative amount of graphite than can precipitate when CO$_2$ infiltrates a rock with $\log_{10} f_{O_2}^{\text{rock}} = \text{FMQ} - 1$ (dashed lines, labelled in mol%). Dotted line: separation between fluids comprising H$_2$O and CH$_4$ ($X_O < 1/3$, low T), and H$_2$O and CO$_2$ ($X_O > 1/3$, high T). (c) Same as (b) but now for $\log_{10} f_{O_2}^{\text{rock}} = \text{FMQ} - 2$. Note that for both (b) and (c), the mole fraction of H$_2$O correlates positively with the maximum relative amount of graphite that can precipitate. Granulite subfacies indicated in (b) and (c) are after Brown (2007) (see Fig. 2d for field definitions).

Fig. 6. Pressure–temperature diagram showing the graphite+C–O–H fluid stability field as a function of different oxygen fugacities (black lines, indicated as \log_{10} values relative to FMQ). Granulite subfacies are after Brown (2007) (see Fig. 2d for field definitions).
3. CO2 infiltration into H2O-absent lower continental crust: C–O fluid system

Most granulites do show some evidence for the presence of H2O as hydrous mineral phases like biotite or amphibole are present, even at peak metamorphic conditions. The absence of H2O-bearing mineral phases in ultra-high temperature granulites (e.g., Berg, 1977; Hacker et al., 2000; Sajeev et al., 2007; Nasipuri et al., 2009; Zhang et al., 2011) indicates that these rocks were formed in an almost completely H2O-absent environment. It is in this respect not a coincidence that the most typical (ultra)-high-density pure CO2 fluid inclusions have been found in ultrahigh temperature minerals such as sapphire (coexisting with quartz) and A2O1-rich orthopyroxene (Tsunogae et al., 2002; Santosh et al., 2004, 2008). Completely dry conditions most likely also prevail at the onset of retrograde metamorphism when the rocks are still at relatively high temperatures. Any H2O that enters the system during cooling, will be completely consumed by relatively fast non-equilibrium retrograde hydration reactions (e.g., Yardley, 1997, 2009). In both cases, i.e. CO2 infiltration into ultrahigh temperature or cooling granulites, the C–O fluid system is thus applicable.

3.1. C–O fluid system calculations

Fluid species within the C–O fluid system comprise CO2, CO, CO2, and O2, which are related by two independent reactions (Table 1). At a fixed P and T, a C–O fluid system is invariant, i.e. one variable of the possible four (xCO2 fluid, xCO fluid, mole fractions of CO2 and CO in the fluid phase) must be fixed in order to calculate the others (Table 2, Fig. 7a-c). The relevant equations that are used for the calculations are shown in Table 2. Table 7a-c shows the calculation results for a C–O fluid system while fixing xCO (Table 7a), fCO2 fluid (Table 7b), or the CO2 mole fraction in the fluid phase (xCO2 fluid) (Table 7c). Calculations show that for a pure CO2 fluid (xCO2 fluid = 0.999), aCO will always be <1 at T>500–600 °C (Fig. 7c).

<table>
<thead>
<tr>
<th>Equilibrium reaction</th>
<th>Equilibrium constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO + SO2 = CO2</td>
<td>K1 = fCO/1-fSO2/1-fCO</td>
</tr>
<tr>
<td>C + O2 = CO</td>
<td>K2 = fCO/1-fO2/1-fCO</td>
</tr>
</tbody>
</table>

Where K1 and K2 denote the fugacity and fugacity coefficient of fluid species i, respectively, and are related to each other by the relation j = γjXj (ideal mixing) (e.g., Huizenga, 2001), xfluid: mole fraction of species i in the fluid phase.

However, similar to the C–O–H fluid system, this does not imply that graphite will not precipitate when CO2 enters a rock at T>600 °C. A CO2 fluid will have relatively high fCO2 fluid (see example in Fig. 7c), i.e. if CO2 infiltrates into a relatively reduced environment (i.e. fO2 fluid > fO2 rock) at isobaric and isothermal conditions, it will adapt by the reduction of CO2 according to reaction 1 during which the carbon activity will increase.

This can be best illustrated with an example: suppose a pure CO2 (xCO2 fluid = 0.999) infiltrates into a rock at P, T and log10 fO2 rock = 11 kbar, 1000 °C, and FMQ = −1, respectively. Under the given P and T conditions, the CO2 fluid will have a log10 fO2 fluid of FMQ + 2.7 and a fCO2 fluid of 0.0003 (open square in Fig. 7c). Under these conditions, the CO2 fluid will adapt to the reducing host-rock conditions, without any graphite precipitation, according to reaction 1. As this reaction proceeds, fCO2 fluid will decrease (approaching fCO2 rock) while aCO will increase. Fluid carbon saturation is reached when log10 fO2 fluid of FMQ − 0.78 (stage 1 in Fig. 8a), i.e., still in redox disequilibrium with the host-rock. Further decrease of fCO2 fluid will result in the fluid to become carbon supersaturated when fluid–rock redox equilibrium has been achieved at FMQ = −1, aCO2 fluid will be 1.6 (stage 2 in Fig. 8a). At this point, graphite precipitation (stage 3 in Fig. 8b) may occur according to the net reaction:

2 CO → C + CO2

which causes fCO2 fluid to increase. In other words, graphite precipitation is only possible if fCO2 fluid can deviate from fCO2 rock (arbitrarily chosen as +0.05 log10 unit in Fig. 8b). The relative amount of graphite that can precipitate is variable and depends on the amount that fCO2 fluid can increase relative to fCO2 rock. However, log10 fCO2 fluid can never exceed that of the carbon-saturated fluid at the specified P-T conditions: FMQ = 0.78. Consequently, the maximum relative amount of graphite that can precipitate is defined by the difference between the carbon-saturated fluid (aCO2 fluid = 1.6, nc = 34.10 mol%) and the carbon content of the carbon-saturated fluid (nc = 33.94 mol%, Fig. 8a), i.e. 0.16 mol%. This maximum amount increases with decreasing fCO2 rock, e.g. for a host-rock with log10 fO2 rock of FMQ = −2, the maximum amount of graphite that can precipitate increases tenfold to −1.6 mol% (Fig. 8c), but is still very small.

This example illustrates that, in contrast to the graphite-C–O–H fluid system, the graphite-C–O fluid system can never reach a condition in which aCO fluid = 1 and fCO2 fluid = fCO2 rock. Consequently, a graphite-C–O fluid system will always be in a state of either aCO fluid > 1 and fCO2 fluid = fCO2 rock, or aCO fluid = 1 and fCO2 fluid = fCO2 rock. Furthermore, if fCO2 rock is greater than that of a carbon-saturated C–O fluid at the given P-T conditions (in the given example, log10 fO2 rock of FMQ = −0.78, see Fig. 8c), a C–O fluid cannot reach carbon saturation, i.e. graphite precipitation associated with CO2 infiltration is impossible under these conditions.

3.2. C–O fluid system: conclusions

Generally, we can conclude the following about graphite precipitation from C–O fluids at granulite-facies conditions: (1) Pure CO2 is undersaturated with respect to carbon and needs to be reduced to CO, according to reaction 1, in order to become carbon (super)saturated. (2) The relative amount of graphite that can precipitate from CO2–O fluids cannot be determined exactly as it depends on how much fCO2 fluid can deviate from fCO2 rock. Graphite cannot precipitate if the fluid and rock are in redox equilibrium. However, if graphite does precipitate, then the maximum relative amount of graphite that can be formed depends on P, T, and fCO2 rock (Figs. 8c, 9a,b) and is in the order of a few mol%, i.e. generally much smaller compared to the maximum amount of graphite that can precipitate from C–O–H fluids. Due to the small molar volume of graphite (−5.3 cm3/mol), it is likely that any graphite that precipitates will not be noticed in a rock specimen. (3) fCO2 rock must be lower than fCO2 fluid of a carbon-saturated C–O fluid at given P-T conditions in order for any graphite to precipitate from CO2. Infiltration of CO2 can, therefore, only result in graphite precipitation if the maximum values of log10 fO2 rock vary...
between –FMQ + 0.2 and –FMQ − 1.5 depending on the granulite facies P–T conditions (Fig. 7a).

4. Retrograde metamorphism

Generally, granulites show a decompression-cooling retrograde P–T path (e.g., Touret and Huizenga, 2012). Most retrograde minerals comprise H2O, suggesting that aqueous retrograde fluids were present during cooling. On the other hand, numerous granulite terrains show that retrograde fluid inclusions have a similar CO2-rich composition (but different density) as the peak metamorphic inclusions (Touret and Huizenga, 2011). This indicates that retrograde metamorphism occurred in an H2O-absent environment. It is likely that H2O-rich fluids can only exist for a relatively short time during retrograde

Table 2
Possible solutions within the C–O fluid system.

<table>
<thead>
<tr>
<th>Variables known</th>
<th>Variables to be solved</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, T, dH2O</td>
<td>fH2O, XH2O, XH2O</td>
<td>(f_{\text{H}2\text{O}} = \gamma_1 \cdot \frac{[4K\gamma_CO_2 + K_4 \text{H}2\text{O} \cdot \gamma_CO_2]^2}{(4K\gamma_CO_2 K_4 \text{H}2\text{O}}) and (X_{\text{H}_2\text{O}} = \frac{K_4 \text{H}2\text{O} \cdot \gamma_CO_2}{(4K\gamma_CO_2 K_4 \text{H}2\text{O}})</td>
</tr>
<tr>
<td>P, T, dCO2</td>
<td>aCO2, fH2O, XH2O</td>
<td>(a_{\text{CO}2} = K_4 \gamma_CO_2 / (K_4 \gamma_CO_2 + \gamma_CO_2)) and (X{\text{H}_2\text{O}} = K_4 \gamma_CO_2 / (K_4 \gamma_CO_2 + \gamma_CO_2))</td>
</tr>
<tr>
<td>P, T, dXO</td>
<td>fH2O, aCO2, XH2O</td>
<td>(f_{\text{H}2\text{O}} = \frac{X_{\text{H}2\text{O}}}{(K_4 \gamma_CO_2 + \gamma_CO_2)^2}) and (a{\text{CO}2} = P \cdot X{\text{H}_2\text{O}} / (K_4 \gamma_CO_2))</td>
</tr>
</tbody>
</table>

See Table 1 for explanation of symbols.
Fig. 8. (a) Chemical evolution of an oxidised CO2 carbon-undersaturated (\(\log_{10} f_{\text{O}_2}\) fluid = \(\text{FMQ}+2.7\), \(a_{\text{C}_{\text{fluid}}} = 0.0003\)) fluid that infiltrates a dry granulite (\(\log_{10} f_{\text{O}_2}\) rock = \(\text{FMQ}−1\)) at \(P = 11\) kbar and \(T = 1000^\circ\text{C}\). Reduction of CO2 causes the fluid to reach carbon saturation at \(\log_{10} f_{\text{O}_2}\) fluid = \(\text{FMQ}−0.78\) (see Fig. 7a). The fluid becomes carbon supersaturated if reduction of CO2 continues until fluid–rock redox equilibrium is reached (\(\log_{10} f_{\text{O}_2}\) fluid = \(\log_{10} f_{\text{O}_2}\) rock = \(\text{FMQ}−1\), \(a_{\text{C}_{\text{fluid}}} = 1.6\), see Fig. 7b). (b) Graphite precipitation is only possible if fluid–rock redox disequilibrium (\(f_{\text{O}_2}\) fluid > \(f_{\text{O}_2}\) rock) is possible. The difference between \(f_{\text{O}_2}\) fluid and \(f_{\text{O}_2}\) rock is arbitrarily set at +0.05 \(\log_{10}\) units. See text for further discussion. (c) Variation of \(a_{\text{C}_{\text{fluid}}}\) (solid line) and the maximum amount of graphite that can precipitate (dashed line) as a function of \(\log_{10} f_{\text{O}_2}\) rock. The diagram illustrates that if \(\log_{10} f_{\text{O}_2}\) rock > \(\text{FMQ}−0.78\), \(a_{\text{C}_{\text{fluid}}}\) will be < 1 and the maximum amount of graphite that can precipitate is negative, i.e. a CO2 fluid that infiltrates into a dry granulite which has \(\log_{10} f_{\text{O}_2}\) rock > \(\text{FMQ}−0.78\) cannot precipitate graphite. Open circles: CO2 that infiltrates a dry granulite with \(\log_{10} f_{\text{O}_2}\) rock = \(\text{FMQ}−1\) may result in graphite precipitation (\(a_{\text{C}_{\text{fluid}}} = 1.6\)) up to a maximum 0.16 mol%. See text for further explanation.

Fig. 9. Maximum relative amount of graphite (\(\Delta n_{\text{C}}\), dashed lines, labelled in mol%) that can precipitate upon CO2 infiltrating a dry rock with a redox state of (a) \(\log_{10} f_{\text{O}_2}\) rock = \(\text{FMQ}−1\), and (b) \(\log_{10} f_{\text{O}_2}\) rock = \(\text{FMQ}−2\). Infiltration of CO2 at \(P\)-\(T\) conditions of 11 kbar, 1100 °C respectively, and \(\log_{10} f_{\text{O}_2}\) rock = \(\text{FMQ}−1\) may result in up to ~0.16 mol% of the carbon in the fluid phase to precipitate as graphite (open square in a). This amount increases to ~1.6 mol% for a more reduced rock (\(\log_{10} f_{\text{O}_2}\) rock = \(\text{FMQ}−2\)) (open square in b). Granulite subfacies indicated in (a) and (b) are after Brown (2007) (see Fig. 2d for field definitions).
metamorphism as H$_2$O is consumed by hydration reactions (Yardley, 1997, 2009). Alternatively, an H$_2$O-rich fluid may exist as an equilibrium phase if the rock has already been extensively hydrated (Yardley, 2009). In the next sections, we consider the effect that cooling and decompression have on both C–O–H (H$_2$O-present) and C–O (H$_2$O-absent) fluid systems with respect to their graphite precipitation and graphite consumption capabilities.

4.1. Retrograde metamorphism: C–O–H fluid system

The atomic carbon content of a carbon-saturated C–O–H fluid depends on the P, T and $f_{O_2}^{fluid}$ (e.g., Luque et al., 1998) (Fig. 10a–e). Cooling and decompression of the fluid, while $f_{O_2}^{fluid}$ is buffered by the host-rock, may result in graphite consumption or precipitation as the fluid carbon content increases or decreases, respectively. This can be evaluated by calculating the isopleths for the fluid atomic carbon content for the graphite–C–O–H fluid system for different f_{O_2} conditions (Fig. 10a–d) (e.g., Pasteris, 1999; Huizenga, 2011). Graphite precipitation at $T \sim$ 600°C (according to the net reaction 2) is expected from a C–O–H fluid that is subjected to retrograde metamorphism when the fluid–rock system has log$_{10} f_{O_2} >$ FMQ (Fig. 10a,b). For more reduced fluid–rock systems, the temperature range at which graphite precipitation occurs during retrograde metamorphism shifts to higher temperatures (Fig. 10c–d).

Graphite consumption is expected to occur during retrograde metamorphism at relatively high temperatures (T > 850 °C) for relatively reduced fluid–rock systems (e.g., at $T \sim ~850°C$ if log$_{10} f_{O_2} =$ FMQ – 2, Fig. 10d), whereas for more oxidised systems graphite consumption occurs at lower temperatures (Fig. 10b,c). Whether graphite will be partially or completely consumed cannot be predicted from the thermodynamic calculations and depends on the fluid–graphite ratio. The net graphite consumption reaction involves graphite reacting with H$_2$O according to the reaction C + 2 H$_2$O → CH$_4$ + O$_2$, where O$_2$ is absorbed by the host–rock (Huizenga, 2011).

It is interesting to note that for fluid–rock systems with log$_{10} f_{O_2} >$ FMQ, graphite precipitation caused by CO$_2$ infiltration at granulite facies P–T conditions is unlikely as f_{O_2} is too high for graphite to coexist with a C–O–H fluid. However, it is for these redox

![Fig. 10. Atomic carbon isopleths (n_C, thin solid lines, labelled in mol.%) for a carbon-saturated C–O–H fluid for different oxygen fugacities: (a) log$_{10} f_{O_2}^{fluid} =$ FMQ – 2 (b), log$_{10} f_{O_2}^{fluid} =$ FMQ – 1 (c), log$_{10} f_{O_2}^{fluid} =$ FMQ (d), log$_{10} f_{O_2}^{fluid} =$ FMQ + 1 (modified after Huizenga, 2011). The explanation of the different fields in diagrams (a)–(d) is shown in (e). If n_C decreases during retrograde metamorphism, graphite precipitation will occur whereas if n_C increases graphite consumption will occur. P–T fields of graphite precipitation (atomic carbon isopleths have a positive slope) and graphite consumption (atomic carbon isopleths have a negative slope) during isobaric cooling are separated from each other by the black dashed line. High-pressure (dotted arrow) and (ultra)high temperature (solid arrow) granulite P–T paths are indicated (Touret and Huizenga, 2012). Grey dashed line: fluids of which $X_O = \frac{1}{3}$. Fluids with $X_O < \frac{1}{3}$ (low T) comprise H$_2$O–CH$_4$ (±H$_2$), fluids with $X_O > \frac{1}{3}$ (high T) consist of H$_2$O–CO$_2$ (±CO). Granulite subfacies indicated in (a)–(d) are after Brown (2007) (see Fig. 2d for field definitions).]
conditions that graphite precipitation from a C–O–H fluid can be expected during retrograde metamorphism. On the other hand, for fluid–rock systems with \(\log_{10} f_{\text{O}_2} < \text{FMQ} \), graphite precipitation caused by CO\(_2\) infiltration at granulite facies \(P-T \) conditions is likely, but there is a distinct possibility that this graphite may be (partially) consumed by a C–O–H fluid during retrograde metamorphism.

4.2. Retrograde metamorphism: C–O fluid system

The atomic carbon content for carbon-saturated C–O fluids shows a consistent decrease with decreasing \(T \) whereas both \(f_{\text{O}_2}^{\text{fluid}} \) (relative to FMQ) and \(X_{\text{H}_2\text{O}}^{\text{fluid}} \) are increasing (Fig. 7a). These changes can be attributed to the precipitation of graphite according to reaction 4. Similar to graphite precipitation from C-O fluids at isobaric-isothermal conditions, graphite precipitation during retrograde metamorphism is only possible if \(f_{\text{O}_2}^{\text{fluid}} \) is not buffered by the rock system (\(f_{\text{O}_2}^{\text{fluid}} \neq f_{\text{O}_2}^{\text{rocks}} \)). In that case, the maximum relative amount of graphite that can precipitate will be very small (Fig. 7a). Graphite consumption by a C–O fluid (according to the reverse of reaction 4) is only possible if retrograde metamorphism is near isothermal decompression in which case both \(f_{\text{O}_2}^{\text{fluid}} \) (relative to FMQ) and \(X_{\text{H}_2\text{O}}^{\text{fluid}} \) will decrease (Fig. 7a). Again, this is only possible if \(f_{\text{O}_2}^{\text{fluid}} \) is not buffered by the rock system.

5. Discussion and conclusions

The presence or absence of graphite in granulites has been used as evidence either to support or to oppose CO\(_2\) infiltration into lower crustal rocks (Glassley, 1982, Lamb and Valley, 1984, 1985; Santosh and Omori, 2008). We have demonstrated that numerous factors control whether graphite precipitates upon CO\(_2\) infiltration into granulites. Overall, this study has shown that the interpretation of the presence or absence of graphite in granulites in relation to CO\(_2\) infiltration is complicated and requires information on the presence of H\(_2\)O and P–T–\(f_{\text{O}_2}^{\text{rocks}} \) conditions during peak and retrograde metamorphism. The most important conclusions of this study are the following:

1. For both C–O–H and C–O fluid systems, graphite cannot precipitate upon CO\(_2\) infiltration in rocks when the oxidation state is too high for graphite to coexist with a fluid phase.

2. Depending on the P–T–\(f_{\text{O}_2}^{\text{rocks}} \) conditions, graphite precipitation as a result of CO\(_2\) infiltration into a C–O–H fluid-bearing granulate can be considerable. No graphite will precipitate upon CO\(_2\) infiltration into a dry granulate (C-O fluid system) if fluid–rock redox equilibrium is maintained. However, precipitation of small amounts of graphite is possible if \(f_{\text{O}_2}^{\text{rocks}} \) can increase relative to \(f_{\text{O}_2}^{\text{fluid}} \).

3. Graphite precipitation is only possible if the host-rock can absorb the oxygen that is released from the relevant reactions that occur in the fluid phase (reactions 1, 2 and 3). This depends on the ability of the host-rock to absorb O\(_2\) efficiently while maintaining a constant \(f_{\text{O}_2}^{\text{rocks}} \) (i.e., buffering capacity, Lamb and Valley, 1984, 1985). The capacity of the host-rock to act as an unlimited oxygen sink is thus critically important for graphite precipitation to take place. The fluid becomes an oxidising agent for the host-rock if it does not have the capacity to absorb the oxygen while keeping \(f_{\text{O}_2}^{\text{rocks}} \) fixed at its buffer value, a scenario that is likely when the CO\(_2\) fluid–rock ratio is large. In that case, CO\(_2\) may become an oxidising agent for the host-rock. Host-rock oxidation by CO\(_2\) may be an explanation of the high oxidation state observed in numerous (graphite-absent) granulate terrains (e.g., Newton and Manning, 2005; Newton, 2011), including the Archean Sheveway Hills in Southern India (Harlov et al., 1997) and Pan African granulites of the Furua Complex in Tanzania (Coolen, 1980).

Acknowledgements

Comments on an earlier version of this paper by Bernardo Cesare and Doug Rumble are highly appreciated. Bernardo Cesare is also thanked for allowing us to use his photograph (Fig. 1). We would like to thank HM Rajesh and an anonymous reviewer for their constructive reviews, and M. Santosh for his editorial support. This work was supported through funding by the National Research Foundation of South Africa to J.M. Huizenga.

References

