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Introduction

Following OECD (2016) “Artificial Intelligence (AI) is the ability of machines and systems to gain 
and apply knowledge and to carry out intelligent behavior”. Applications range from education 
to social welfare, to energy and the environment. Advanced developments in the field of Machine 
Learning (ML) imply that machines will be able to learn from their experience and make their 
own decisions, without further input from humans, beyond initial design of the machine. Already, 
machines have surpassed the ability of humans to perform certain functions, such as image 
recognition and other intelligence-related tasks. 

At the same time, generation of large volumes of data and the creation of centralized data 
repositories promise to drive growth across all sectors of society including agriculture, industry, 
banking, resource allocation, public health, education, and poverty reduction. Specifically, these 
data can be used to determine relationships, predict behaviors and outcomes, and establish 
dependencies between correlated variables. Algorithms like those developed through ML are used 
to generate automated outcomes using these data and improve the performance of algorithm-
driven tasks, promoting improved business operations, management, and productivity as well as 
improved consumer-driven tasks.

Despite the growth of the benefits engendered by AI and the development of ML, some fears 
appear in the society revealed in particular by the press. Indeed, looking at it we observe that the 
influence and the importance of AI appears through disturbing titles like “software uses across the 
country to predict future criminals, is biased against black people”, or “if you are not a white male, 
AI’s use in healthcare could be dangerous for you”, or “algorithms are making the same mistakes 
assessing credit scores that humans did a century ago”, etc. Thus, even if AI creates advantages 
in the day life, it questions several issues, in particular a main question is: are the predictions 
provided by AI biased? A common idea is that the softwares are supposed to make policy more fair 
and accountable, but a huge literature shows that the predictions can be unfair, and coming from 
society expectations are very high, (Hardt et al., 2016), (Zafar et al., 2017), (Agarwal et al., 2018) 
or Berg et al. (2018) with their works on discrimination, and also Miller (2019) among others. 

In many cases, the reasons evocated to use AI consider that they can allocate resources with higher 
precision, can reduce the role of human instincts and prejudices, but in counterpart perpetuate 
biases against certain groups (for instance in case of racial profling). The opportunities associated 
to the use of AI concern higher accuracy, effectiveness, lower cost, higher effciency, preventing 
human biases and prejudices, transparency, consistency, more equal access to opportunities and 
resources. But at the same time we observe unfairness, unequal allocation of benefit or harm, 
opaqueness, inexplicability, unequal representation, invasion of privacy. Thus, it is important to 
focus on technical solutions to enhance fairness, explainability and accountability for ML systems, 
because if technical tools are useful, they are not sufficient.
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Another reason of the necessity to understand how AI works refers to the potential impact that 
the European Union’s new General Data Protection Regulation will have on the routine use of 
machine learning algorithms. It takes effect as law across the EU in May 2018 and has, in particular, 
the objective to restrict automated individual decision-making (that is, algorithms that make 
decisions based predictors user-level) which can “significantly affect” users. The law has created 
a “right to explanation” whereby a user can ask for an explanation of an algorithmic decision 
that was made about them. Interesting discussions on this subject can be found in Goodman & 
Flaxman (2017) and Whatcher et al. (2017) for instance.

Thus, three important topics emerge for acceptation of the use of ML by the scientist, industrial 
and regulatory communities. They concern issues of fairness, explainability, and accountability. 
The sources of unfairness are (i) data unfairness, (ii) algorithmic unfairness, (iii) impact 
unfairness. In this paper we are interesting by the question of interpretability. Indeed the concept 
of opacity seems to be at the very heart of new concerns about ‘algorithms’ among legal scholars, 
social scientists and engineers. Using the data as inputs, the algorithms produce an output (a 
classification i.e. whether to give an applicant a loan, or whether to tag an email as spam) or 
predictions. The output of the algorithm rarely does one have any concrete sense of ‘how’ or ‘why’ 
a particular decision has been arrived at from inputs. Additionally, the inputs themselves may be 
entirely unknown or known only partially. The question naturally arises, what are the reasons for 
this state of not knowing? Following recent researches we discuss some solutions related to these 
questions.

In order to provide global insight on the subject we begin to recall some definitions of fairness 
and provide some references on the subject in Section two. Section three is devoted to the 
definition of interpretability. In Section four we propose solutions for the interpretability of the 
algorithms. Section five focuses on two local solutions whose interest could be determinant for 
regulations. Section six gives an idea of the future possible ways to measure the interpretability of 
the algorithms. Section seven concludes.

Unfairness

Applications of fair machine learning, in the literature, concerns recidivism prediction, automated 
hiring, and face recognition (among others), where fairness can be understood, at least partially, 
in terms of well-defined quantitative metrics. However it has recently been shown that algorithms 
trained with biased data have resulted in algorithmic discrimination, in particular the statistical 
methods used in the US judicial system, pointing to the bias against African-American accused, 
considering that African-American accused were more likely to be wrongly labeled as higher risk 
of recidivism (Wadsworth et al., 2018).

Thus, significant effort in the fair machine learning community has focused on the development 
of statistical definitions of fairness (Hardt et al., 2016; Berk et al., 2018) and algorithmic methods 
(Agarwal, 2018; Kusner et al., 2017). The first notion of fairness which was introduced is “statistical 
parity”, called also “group fairness” or “demographic parity” which equalizes outcomes across 
protected and non protected groups. Demographic parity requires that a decision is independent 
of a protected attribute meaning that membership in a protected class should have no correlation 
with the decision. Nevertheless this approach can create highly undesirable decision: for instance 
if the protected attribute is gender, one might incarcerate women who pose no public safety risk 
so that the same proportions of men and women are released on probation (Dwork et al., 2012).

In order to avoid the limitation of the previous definition the “equalized odds” with respect to 
a protected attribute was introduced: the predictor and the protected attribute are independent 
conditionally on the output (Hardt et al., 2016). An unfairness metric, which is defined in terms of 
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misclassification rates, has been introduced by Zafaz et al. (2017) called “disparate mistreatment”. 
The authors call a decision-making process to be suffering from disparate mistreatment with 
respect to a given sensitive attribute (e.g., race) if the mis-classification rates differ for groups 
of people having different values of that sensitive attribute (e.g., black or white). Fermanian and 
Guégan (2020) provide updates on the subject.

To avoid unfairness in the ML process two stategies have been developed. The pre-process training 
ensures fairness of any learned model eliminating any sources of unfairness in the data before 
the algorithm is formulated. A major problem with this approach is that interaction effects (e.g., 
with race and gender) containing information leading to unfairness are not removed unless they 
are explicitly included in the residualizing regression even if all of the additive contaminants are 
removed (Zemel et al., 2013; Berk et al., 2018; Lu et al., 2016). In the post-processing training, after 
the algorithm is applied its performance is adjusted for instance by random reassignment of the 
class label previously assigned by the algorithm to make it fair (Feldman et al., 2015; Hardt et al., 
2016). For instance a decision tree learner can be changed in splitting its criterion and pruning 
its strategy by using a novel leaf re-labeling approach after training in order to satisfy fairness 
constraints, (Kamiran et al., 2010; Zliobaite, 2015; Agarwal et al., 2019; Chzhen et al., 2020).

However, it has been largely documented that simply removing certain variables from a model 
does not ensure predictions that are, in effect, uncorrelated to those variables. For example, if a 
certain geographic region has a high number of low income or minority residents, an algorithm 
that employs geographic data to determine loan eligibility is likely to produce results that are, in 
effect, informed by race and income (Hardt et al., 2016). As unfairness is also a part of the non 
interpretability of the algorithms we question now the notion of interpretability and introduce 
some solutions.

A tentative to define interpretability

The need for explaining the decisions of expert systems was discussed as early as the 1970’s. 
Nevertheless the definition associated to interpretability is not fixed. Following Biran and Cotton 
(2017), we can summarize most of the discussions around this concept as: “A key component of an 
artificially intelligent system is the ability to explain the decisions, recommendations, predictions 
or actions made by it and the process through which they are made.” This ability can concern (i) 
the interpretability associated to justification which explains ‘why’ one obtains such result, or (ii) 
the interpretability associated to explanation which corresponds to ‘how’ we got this result. In 
that latter case, we focus on post hoc explanations. Interpretability can also refer to transparency 
which is the opposite of opacity or ‘black-boxness’, including the knowledge of the entire model, 
the knowledge of individual components such as parameters, and the knowledge of the training 
algorithm (Burrell, 2016; Doshi-Velez and Kim, 2017; Lipton, 2018).

Going through the literature, we see that there is no consensus on the definition of interpretability. 
It seems reasonnable to consider on the one hand the explicability which specifies how the 
model works, on the other hand understanding of the predictions why, which is a matter of 
interpretation. Discussing these two issues is important; indeed, in some application domains 
users need to understand the system’s recommendations enough to legally explain the reason for 
the decisions. For instance in the medical domain, if a doctor makes a decision (say, recommends 
surgery) based on the prediction of a classification model and that leads to major harm to the 
patient, the doctor should understand the reason for the model’s predictions in order to defend 
her/his decisions in court if she/he is sued for medical negligence. Legal requirements are also 
common in credit scoring applications, where a bank often has the legal obligation of explaining 
why a customer was denied credit.
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Nevertheless even if the GDPR recitals state that a data subject has the right to “an explanation of 
the decision reached after algorithmic assessment,” this requirement prompts the question: what 
does it mean, and what is required to explain an algorithm’s decision? In fact a legally binding 
right to explanation does not exist in the GDPR, and we can consider that the right would only 
apply in limited cases: when, for instance, a negative decision was solely automated and had legal 
or other similar significant effects. Thus, explaining the functionality of complex algorithmic 
decision-making systems and their rationale in specific cases is important even if it is a technically 
challenging problem. A black box predictor is a data-mining and machine-learning obscure 
model, whose internals are either unknown to the observer or they are known but uninterpretable 
by humans. An explanation has to be an “interface” between machines and a decision maker that 
is comprehensible to humans (Whatcher, 2017).

In the state of the art a small set of models are considered easily understandable and interpretable 
for humans: decision tree, rules, linear models. A decision system based on a decision tree exploits 
a graph structured like a tree and composed of internal nodes representing tests on features or 
attributes (e.g., whether a variable has a value lower than, equals to or greater than a threshold) 
and leaf nodes representing a class label. A decision tree can be linearized into a set of decision 
rules with the if-then form for instance. 

Another set of approaches adopted to provide explanations are linear models. This can be done 
by considering and visualizing the features importance, i.e., both the sign and the magnitude of 
the contribution of the attributes for a given prediction. If the contribution of an attribute-value is 
positive, then it contributes by increasing the model’s output. Instead, if the sign is negative then 
the attribute-value decreases the output of the model. An intrinsic problem that linear models 
have when used for explanation is that when the model does not optimally fit the training data, it 
may use spurious features to optimize the error, and these features may be very hard to interpret 
for a human. Nevertheless these models can be used to interpret more complex models like 
Support Vector Machine, Deep Neural Networks or Convolution Neural Networks for example. 
We can distinguish two approaches the global or local approaches to make the algorithms more 
interpretable.

Does it exist interpretable solutions?

When a model is completely interpretable we are able to understand the whole logic of a model 
and follow the entire reasoning leading to all the different possible outcomes. In this case, we are 
speaking about global interpretability. At the contrary the local interpretability corresponds to 
the situation in which it is possible to understand only the reasons for a specific decision: only 
the single prediction/decision is interpretable. In the first case we face the “black box explanation 
problem” which consists in providing a global explanation of the black box model through an 
interpretable and transparent model: it explains the model (how it works). The second case 
concerns “the outcome explanation problem” which consists in providing an explanation for the 
outcome of the black box (Why this result). In the former case the solutions mimic the black box, 
and in the latter case the solutions provide a predictor which is locally interpretable.

We precise now the formal framework used in the rest of the paper. Let be X the vector of original 
inputs, X ∈ X ∁ Rd, we denote X' ∈ X a vector for its interpretable representation. The classifier 
assimilated to a blackbox need to be explained is designated by b∶X → R and Y= b(X), shorthand 
for Y = {b(x)  | x ∈ X}, b(X) is a black box predictor, whose internals are either unknown to the 
observer or they are known but uninterpretable by humans. Y is commonly called the output. 
The objective is to find an interpretable classifier c ∶ X →R, c ∈ C, where C is a class of potentially 
interpretable models such as linear models, decision trees, or rule lists, and let Ω(C) be a measure 
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of the complexity (as opposed to interpretability) of c (deph of a tree, number of non-zeros in 
a linear model, etc). Thus c is an interpretable predictor yielding a decision c(X) = Y which can 
be given a symbolic interpretation comprehensible by a human, i.e., for which a global or a local 
explanation is available. 

Working with supervised ML, one uses a trained data set to train the predictor b, and a test data 
set DT  to evaluate its performance : let Ŷ the outcome using the training data set, and (X,Ŷ) ∈ DT. 
The objective is to verify how matches Ŷ and Y=b(X). The interpretable predictor c need to be as 
close as possible to b in the sense that c(X) = b(X), for (X,Ŷ) ∈ DT and to mimic the results obtained 
through b.

A global interpretable model cg is such that cg = f (b,X), for some strategy f(.,.), and is derived from 
b and a subset of X ∈ X. A local interpretable predictor is defined as cl = f(b, X) derived using b 
and a neighborhood of x. The objective is to identify the function f. For simplicity, an input will be 
designated by x in the following. We introduce several strategies f permitting to determine global 
cg or local cl solutions and then propose specific solutions for interpretability or explainability. 

Global approach
For instance, explaining neural networks with decision trees is a global approach. In that case, to 
build f a sort of “prototype” is generated for each target class in Y by using genetic programming 
to query the trained neural network b; the input variables X are exploited for constraining the 
prototypes; then the best prototypes are selecting for inducing the learning of the decision tree cg. 
This approach leads to get more understandable and smaller decision trees starting from smaller 
data sets. Since 1996 single tree approximations for NN have been developed, Craven et al. (1996). 
New approaches are detailed in Guidotti et al. (2018).

Other approaches use decision rules. The solution f lies on a fair documentation of the process by 
inserting knowledge into neural networks, extracting rules from trained NNs, and using them to 
refine existing rules. Same kind of processes using rules-based classifiers have also been developed 
for tree ensemble or Support Vector Machines. All these solutions are not generalizable because 
they are strongly dependent on the black box b and on the specific type of decision rules cg. This 
is a limitation of the method, thus agnostic methods have been developed with the objective to 
be ajustable for all models. The Generalized Additive Models (GAM) approach proposes a global 
solution based on splines functions, as bagged and boosted ensembles trees that chooses the number 
of leaves adaptively. If we denote cj(x) the output obtained from tree j, j = 2, … , M, for classification 
purpose, the output b of the additive tree model is a weighted sum of all the tree outputs:ω

b(x)= ∑j=1) ωjcj (x)

where ωj ∈ R is the weight associated to tree j. In their paper Lou et al. (2017) provide agnostic 
tools, see also Freitas (2014), and Ribeiro et al. (2016a).

Local approach
The global approach is also relatively limited due to the complexity of the models to explain, 
thus recent research have focused on specific local explanation providing explainability for 
the prediction. A common method is based on visualization. The technique is used to explain 
CNN process when they recognize images. The method is based on salient mask which is a part 
of an image or a sentence in a text. The explanation cl of the prediction is provided through a 
visualization of the area of an image for instance. A technique consists in assigning a relevance 
score for each layer backpropagating the effect of a decision on a certain image up to the input 
level. The function f used to extract the local explanation cl  is always not generalisable and strictly 
tied with the convolutional neural network.

M
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Thus, agnostic approach has also been developed for the local approach. The agnostic solutions 
proposed for the outcome explanation problem implements function f such that any type of 
black box b can be explained. All these approaches are generalizable by definition and return a 
comprehensible local predictor cl. The more popular technique uses again the concept of additive 
models to weight the importance of the features of the input dataset. It provides a graphical 
explanation of the decision process by visualizing the feature importance for the decisions, the 
capability to speculate on the effect of changes to the data, and the capability, wherever possible, to 
drill down and audit the source of the evidence, some examples are in Poulin et al. (2006).

A way to find f providing a local interpretable predictor cl  is known as the Local Interpretable 
Model-agnostic Explanations (LIME) approach. LIME approach for f does not depend on the type 
of data, nor on the type of black box b to be opened, nor on a particular type of comprehensible local 
predictor cl, thus LIME is model-agnostic in its philosophy. The main intuition of LIME is that 
the explanation may be derived locally from the inputs generated randomly in the neighborhood 
of the input x to be explained, and weighted according to their proximity to it. Linear models as 
comprehensible local predictor cl are considered returning the importance of the features, and as 
black box b, classifiers like decision trees, logistic regression, nearest neighbors, SVM, and random 
forest are usually tested. A weak point of this approach is the required transformation of any 
type of data in a binary format (Ribeiro, 2016a). Other local interpretability methods have been 
developed like the counter factual explanations, but with a different objective (Ribeiro, 2016b). 
We detail now these two main local approaches.

Local interpretable solutions

Coming back to the previous discussion it can exist a trade-off between the performance of the model 
and the effort required to interpret it - especially in complex domains like text and image analysis, 
where the input space is very large. In these contexts, accuracy is usually sacrificed for models that 
are enough compact and transparent to be comprehensible by humans. To try to associate accuracy 
and transparency local approaches can be considered and they will permit to answer to the objective 
assignated to this paper: ‘why’ and ‘how’ a decision is taken using ML algorithms.

LIME method
The Local Interpretable Model-agnostic Explanations (LIME) method interprets individual model 
predictions based on locally approximating the model around a given prediction. LIME refers to 
simplified inputs x' as “interpretable inputs,” and introduce a mapping x = hx (x') which converts 
a binary vector of interpretable inputs into the original input space. Different types of hx mappings 
are used for different input spaces. For bag of words text features, hx converts a vector of 1’s or 0’s 
(present or not) into the original word count if the simplified input is one, or zero if the simplified 
input is zero. For images, hx treats the image as a set of super pixels; it then maps 1 to leaving the 
super pixel as its original value and 0 to replacing the super pixel with an average of neighboring 
pixels (this is meant to represent being missing).

The important point concerning this approach is that it is based on local accuracy meaning that 
when approximating the original model classifier b for a specific input x, local accuracy requires 
the explanation model cl to at least match the output of b for the simplified input x’ (which 
corresponds to the original input x). 

If we denote l a measure of how unfaithful cl is in approximating b in the locality around x', 
measured by a local kernel πx, we need to minimize l(b, cl, πx,) while having Ω(C) be low enough 
to be interpretable by humans. The explanation f(x') produced by LIME is obtained solving

f(x') = argmin cl  ∈C  l(b, cl, πx,) + Ω(C).
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If we use an additive model as explanation model for b in the framework proposed by LIME where 
a mapping x = hx (x') converts a binary vector of interpretable inputs into the original input space, 
then the local approximation cl tries to ensure that cl (z') ≈ b(hx (z')) whatever z' ≈ x’ (note that 
hx (x') = x even though x' may contain less information than x because hx  is specific to the current 
input x). 

An explanation solution that is linear function of binary variables is provided by:

cl (z') =φ0 + ∑ φi z'i

where z' ∈ [0,1]M, M is the number of simplified input variables, and φ0 ∈ R .	   This explanation 
solution attributes an effect φi to each input, and summing the effects of all input attributions 
approximate the output b(x) of the original model. Some applications are provided in Ribeiro 
(2016a). This approach provides a local answer for the interpretation or the understanding of the 
model b ('how'): it tries to illustrate the way by which the predictions have been provided. 

Unconditional counterfactual explanation method
This approach provides a way to understand how a given decision has been obtained, and can 
provide grounds to contest it, and advice on how the data input can change his or her behaviour 
or situation to possibly receive a desired decision (e.g. loan approval) in the future. This knowledge 
can be associated to the works implied in the fairness of machine learning development. Suppose 
that you were denied a loan because your annual income was 30,000 euros. If your income had been 
45,000 euros, you would have been offered a loan? Here the statement of decision is followed by a 
counterfactual, or statement of how the world would have to be different for a desirable outcome to 
occur. The counterfactual approach aims to create the smallest possible change to obtain a desirable 
result. The difficulty is to have knowledge of the relevance of all the factors at play and of their 
possible change. Hence the idea of having a counterfactual explanation which modifies the values 
from which we start as little as possible. Thus, the underlying idea is quite simple: the idea is to find a 
neighboor from the input which provides a different prediction with the same classifier. 

As before denote X the input, Y the output, and the classifier bω trained by finding the optimal 
set of weights ωi that minimises an objective loss function l(.) over a set of input data X, then the 
objective is to compute: 

argminω l(bω (x), y) + σ(ω)

where σ is a regularizer over the weights. The idea is to find a counterfactual x' as close to the 
original point x as possible such that bω (x’) is equal to a new target y'. We can find x' by holding ω 
fixed and minimizing the related objective: 

argminx, maxλ λ(bω (x’) – y’)2 + d(x,x’) 
where d(,) is a distance function that measures how far the counterfactual x' and the original 
data point x are from one another. In practice, maximisation over λ is done by iteratively solving 
for x' and increasing λ until a sufficiently close solution is found. The choice of the distance d is 
important, that of λ is less so. Depending on the data, the distance could be the L1 or L2 norm, the 
Manhattan distance weighted by the inverse median absolute deviation. As local minima are a 
concern, one can initialize each run with different random values for x' and select as counterfactual 
the best minimizer of the previous equation. These different minima can be used as a diverse set 
of multiple counterfactuals.

Thus, with this approach, the original classifier does not change, the inputs are concerned in the 
sense that for a given classifier they determine the prediction. Thus the method tries to answer 
to the question of why we got these predictions. In that sense counterfactuals represent an easy 
first step that balances transparency, explainability, and accountability with other interests such 
as minimising the regulatory burden on business interest or preserving the privacy of others, 

M
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while potentially increasing public acceptance of automatic decisions. Thus, it may prove a highly 
useful mechanism to meet the explicit requirements and background aims of the GDPR, but it is 
important to have in mind that this approach may be the target of specific attacks such as those 
known as ‘adversarial attacks’.

How to compute explanations of model prediction?

In the previous paragraph we provided some strategies to interpret ML algorithms and their 
predictions without quantifying the approximations which have been proposed. Some works tend 
to answer to this problematic. 

Global feature attribution is represented in the literature by several methods: gain, split count, 
and feature permutation. Gain is the total reduction of loss or impurity contributed by all splits 
for a given feature. Though its motivation is largely heuristic, gain is widely used as the basis for 
feature selection methods (Friedman et al., 2011). Split Count consists in simply to count how 
many times a feature is used to split. Since feature splits are chosen to be the most informative, this 
can represent a feature’s importance (Chen & Guestrin, 2016). With permutation one randomly 
permutes the values of a feature in the test set and then observes the change in the model’s error. If 
a feature’s value is important then permuting it should create a large increase in the model’s error 
(Auret & Aldrich, 2011). Two other measures have been also developed: the SHAP measures and 
the Quantitative Input Influence measures (QII).

SHAP values for LIME approach
The ability to correctly interpret a prediction model’s output is extremely important but the 
solutions are not simple and it exist several strategies. These strategies engender appropriate user 
trust, provide insight into how a model may be improved, and support understanding of the process 
being modeled. In some applications, simple models (e.g., linear models) are often preferred for their 
ease of interpretation, even if they may be less accurate than complex ones. It could be interesting to 
compare the accuracy of the ‘interpretable’ built when blackbox models are used. It is the objective 
of the SHapley Additive exPlanation (SHAP) values which are based on a unification of ideas from 
game theory (Strumbelj & Kononenko, 2014), and local explanations (Ribeiro, 2016a).

We have seen previously that the more understanding solutions are based on families of additive 
models. In the case of the local approximation proposed by the LIME method, the solution is 
provided by equation introduced in subsection 5-1. The explanation model cl (x') matches the 
original model b(x) when x = hx(x'), and φ0 = b(hx(0)) represents the model output with all 
simplified inputs toggled off (e.g. missing). As soon as an additive interpretable model is built, 
the SHAP values characterize the additive inputs of this interpretable model. For instance if the 
additive model reduces to the very simple model:

cl(x) = b(x) = ∑(j=1) ωj xj + a

The SHAP values are equal to φ0 (x) = a and φj(x) = ωj (xj- E[xj]). The exact computation of SHAP 
values is challenging, some examples can be found in Lundberg and Lee (2017) and Strumbelj and 
Kononenko (2014).

In case of a more general additive interpretable model like the model introduced in subsection 5-1, 
it has been shown that this model presents three interesting properties: local accuracy, missingness, 
and consistency: the local accuracy states that the sum of the feature attributions is equal to the 
output of the function we are seeking to explain; missingness states that features that are already 
missing (such that z= 0) are attributed no importance; consistency states that changing a model 
so a feature has a larger impact on the model will never decrease the attribution assigned to that 
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feature. The evaluation of the effect of missing features has on a model cl is done through the use of 
the function hx  evaluating b(hx(z)) and calculate the effect of observing or not observing a feature 
(by setting z= 1 or z = 0). 

To compute the SHAP values for the approximation done through the linear model, we define 
bx(S) = b(hx(z’)) = E[b(x) | xS] where S is the set of non zero indexes in z', and E[b(x) |xS] is the 
expected value of the function conditioned on the inputs variables xS belonging to S. SHAP values 
attribute φj values to each variable:

                                φj = ∑   

Where N is the set of all inputs.

The computational complexity of SHAP values have been extensively studied and some ways to 
reduce its computational times are discussed in Lundberg et al. (2018), Chen et al. (2019), and 
Erion et al. (2019).

QII and Counterfactual approach
The Quantitative Input Influence measures (QII) model the difference in the quantity of 
interest when the system operates over two related input distributions: the real distribution and 
a hypothetical (or counterfactual) distribution that is constructed from the real distribution 
in a specific way to account for correlations among inputs. Specifically, if we are interested in 
measuring the influence of an input on a quantity of interest of the system behavior, we construct 
the hypothetical distribution by retaining the marginal distribution over all other inputs and 
sampling the input of interest from its prior distribution. This choice breaks the correlations 
between this input and all other inputs and thus lets measure the influence of this input on the 
quantity of interest, independently of other correlated inputs. 

Using the same notations as before. As QII quantifies the use of an input for individual outcomes, 
this quantity is defined for a particular individual. Denote x this individual and c the classifier 
retains in fine, the quantity E[c(.) = 1 | X=x] represents the expectation of the classifier c evaluating 
to 1 for the individual x. The influence measure, when the positive classification is the objective is 
computed as

QII (xi) = E[c(X) = 1 | X=x] - E[c(XUxi)) = 1 | X=x]

where the random variable XUxi corresponds to a randomized intervention on input x which 
is replaced with a random sample xi. Thus, we have switched between the original distribution, 
represented by the random variable X, and the intervened distribution represented by XUxi, Datta 
et al. (2016) for some applications.

As an example consider an analyst who asks: “What is the influence of the input gender on 
positive classification for women?” If it observes that 20% of women are approved according to 
his classifier, then, he replaces every woman’s field for gender with a random value, and if he 
notices that the number of women approved does not change, this means that an intervention 
on the gender variable seems not causing a significant change in the classification outcome. Now 
the analyst can repeat the same process with ‘weight lifting ability’ variable and if the results show 
a 20% increase in women’s hiring, therefore he can conclude that for this classifier, the variable 
‘weight lifting ability’ has more influence on positive classification for women than gender. By 
breaking correlations between gender and weight lifting ability, can be a way to establish a causal 
relationship between the outcome of the classifier and the inputs. These facts are interesting and 
need to be more developed to verify what the correlations are really suppressed, and to understand 
the causal relationship between classifier’s output and inputs.

M! 
(S∁N-{i})

|S|!(M - |S|- 1)!/M!  
[bx (S ∪ {i})- bx (S)]
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Conclusion

The governance of decision making is an important task with developement of AI in industies 
and banking system. The requirement for explanation, a requirement codified through risk 
management in traditional sectors of industry and by the rules of certain professions (medicine, 
law), is also present in the AI sphere, where certain aspects are covered by legislation (for instance 
RGPD law).

To explain an algorithm enabling its users to understand what it does, with enough details and 
arguments to instill trust is a difficult task. The global and local solutions discussed here provided 
very interesting pistes, in particular the local counter-factual approach which could be a method 
from which the regulator could draw inspiration to verify the accountability of the algorithms. 
But many risks exist: one of them related to the interpretability of the models is known under the 
name of adversarial attacks and its study is in full expansion, we do not discuss it in this paper 
being beyond the objective of it, nevertheless some recent and interesting references are Dylan et 
al. (2018), Kim and Malde (2020), and Slack et al. (2020), for a review Bogroff and Guégan (2019).

In summary, for an algorithm to be explainable, its principles must be sufficiently documented 
to be comprehensible to all users; the transition from algorithm to code, then the execution of 
the program, must be formally verified. Ultimately, the explainability of an algorithm relies on 
rigorous methods, but also on a body of unformalized knowledge shared between human beings. 
As a result, a compromise has to be found between learning capacities and explainability. This 
compromise needs to be evaluated in relation to the field of application: while explainability is not 
in principle essential in applications such as games, it is crucial once the interests, rights or safety 
of people are concerned. From a social point of view people do not ask why an event P happened, 
but rather why event P happened instead of some event Q (Papernot, 2018; Alvarez-Melis, 2018).

It exist several works coming from the legal literature which propose procedures for the 
transparency of the source code in case of auditing purpose but also for the understanding of 
the users, making software verification, fairness random choices, disclosing commitments. They 
suggest the developers to publish in advance commitments explaining how the systems do without 
disclosing how those systems work up front. These procedures are complementary to the previous 
analysis and preaches for the need of platforms and algorithms to be evaluated (compliance, 
fairness, trustworthiness, neutrality, transparency…). This will contribute to good algorithm 
governance. In a complete paper, Kroll et al. (2016) provide solutions to make accountable 
machine learning algorithms, recommandations are also done in Cerna (2018), Linkov et al. 
(2018). Rules, regulation and governance are addressed in Barocas et al. (2013).

Ultimately, the role of humans must be preserved throughout the process of explicability, which 
requires significant expertise from those in charge of systems using AI in decision-making 
processes.
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